Теплообмен между несколькими теплоносителями – делаем правильно

Особенности проектировки

Чтобы рассчитать габариты основных секций теплообменника труба в трубе, потребуется информация о следующих параметрах:

  • Средний показатель разницы температур теплоносителей.
  • Тепловая нагруженность прибора.
  • Коэффициент теплоотдачи, происходящей между стенками аппарата и теплоносителем.
  • Показатель теплового сопротивления стенок теплообменника.
  • Площадь расчетной поверхности, вдоль которой осуществляется теплообмен.

Теплотехнические характеристики потребуется дополнить еще некоторыми расчетами. В первую очередь это касается гидравлических параметров, которыми обладает аппарат. Принцип работы теплообменника труба в трубе во многом зависит и от того, какая механическая нагрузка оказывается на металлические трубы системы отопления. Что касается коэффициентов теплообмена труб, то они напрямую зависят от рабочих сред, с которыми взаимодействуют: их знание позволит самостоятельно рассчитать теплообменную систему.

Способы увеличения теплоотдачи

С точки зрения отдачи в пространство максимального количества тепла менее эффективен, чем труба, разве что шар. У него еще худшее соотношение поверхности к объему.

Что же делали предки, чтобы эти чудовищные отопительные приборы грели?

Как увеличить теплоотдачу трубы?

Увеличивали инфракрасное излучение отопительного прибора . Простая окраска регистра черной матовой краской давала ощутимое потепление в помещении. Кстати, нынешнее хромирование современных змеевиков для ванной выглядит эффектно, но с точки зрения теплоотдачи прибора — идиотизм чистейшей воды.

Увеличена теплоотдача труб стальных может быть и благодаря оребрению, наваренному или смонтированному иным способом снаружи трубы . Конечная стадия реализации этого способа — конвектор, виток трубы с поперечными пластинами. Разумеется, в этом случае все методы расчета теплоотдачи трубы неприменимы — труба отдает в этом приборе меньшую часть тепла.

Установка радиаторов

Основными элементами отопительной системы в помещениях дома являются радиаторы. В настоящее время многие специалисты стали советовать: не приобретать традиционные чугунные батареи, поскольку они тяжелые и по свойствам значительно хуже изделий из биметаллического сплава. Кроме того, последние изделия выглядят гораздо эстетичнее и имеют хорошую теплоотдачу.

Разводка радиаторов бывает нескольких типов

Самым распространенным является боковое одностороннее подключение. При этом подводящую трубу подсоединяют к верхнему патрубку, а отводящую трубку – к нижнему. Благодаря этому достигается максимальная теплоотдача, а при обратном подключении мощность уменьшается примерно на 10%.

Основным преимуществом нижнего подключения является эстетичность – в этом случае обе трубы скрываются за плинтусом. Патрубки находятся внизу трубы и обращены в пол. Диагональное подключение в основном используют для многосекционных радиаторов. В результате горячая вода подается с одной стороны в верхний патрубок, а с другой – выводится через нижний.

Радиаторы подключают двумя способами: последовательно и параллельно. При параллельном подключении вода движется под давлением внутри всей системы, а при поломке одной батареи все отопление выключают до завершения ремонта. При параллельном подключении радиаторы можно менять, не отключая отопительную систему.

Подсчет количества секций прибора приходится производить в зависимости от конкретной ситуации. Это во многом зависит от климата региона и качества утепления дома. Но по стандарту, 1 секция радиатора способна обогреть 2 «квадрата» площади в том случае, если высота потолков не более 2,7 м

Данную формулу можно считать условной, так как важно учитывать и другие параметры: толщину стен и их материал, тип и параметры утеплителя (детальнее: «Как выбрать утеплитель для труб отопления и нужен ли он «), мощность обогревателя, климатические особенности региона. Котлы для отопления двухконтурные должны выбираться с учетом площади помещения, но и от площади дома и типа радиаторов в немалой степени зависит эффективность отопления

Конструктивные особенности пластинчатого теплообменника

    Отличительной чертой устройства переноса теплоты является наличие пакета, состоящего из пластин. Они представляют собой гофрированные элементы, изготовленные из металла. Если точнее, то пластины производятся в большинстве случаев из нержавеющей стали, так как она прекрасно выдерживает воздействия теплоносителя, обладающего низким качеством.

Эти элементы соединяются между собой. При этом их крепление осуществляется с поворотом на 180 градусов относительно друг друга. Помимо пакета пластин, в состав теплообменника этого типа еще входит:

• подвижная плита;

• неподвижная плита, на которой расположены патрубки для присоединения трубопроводов;

• элементы крепления, благодаря которым происходит стягивание 2-х плит и создается рама;

• две направляющие (верхняя и нижняя), имеющие вид круглого прута.

     Такая продуманная компоновка устройства позволяет создавать аппараты, отличающиеся компактными габаритами.

     Рама пластинчатого теплообменника служит для закрепления пластин, которые изготавливаются не только из нержавейки, но и из меди или графита. Благодаря тому, что поверхность устройства является своеобразной, она создает довольно сильную турбулентность средам, использующимся для переноса тепла и движущимся по трубам. За счет этого возрастает теплопередача у аппарата.

      После установки гофрированных пластин на свои места образуется две герметичные системы, полностью изолированные друг от друга. Именно по ним движется холодная и горячая среда. Благодаря такой конструкции происходит теплообмен.

      Из гофрированных пластин собирается пакет. При этом они располагаются крест-накрест. Такое их размещение позволяет создать жесткую конструкцию. Все гофрированные пластины оснащаются прокладками для уплотнения соединений. Это очень важные элементы, обеспечивающие хорошую герметичность устройства особенно в рабочем состоянии. Прокладки позволяют теплоносителям бесперебойно протекать в противоположных направлениях по трубам. Они имеют особую конфигурацию. Благодаря такой конструктивной особенности уплотнительных элементов не допускается смешивание холодной и горячей среды.

     Высокий требуемый коэффициент передачи тепла будет обеспечен, если правильно подобрать размер теплообменника в соответствии с заданным объемом проходящей среды. Тем более в таком устройстве наблюдается повышенная турбулентность носителя тепла.

     Теплообменник, состоящий из гофрированных пластин — это устройство поверхностного типа. По нему движется нагреваемая и нагревающая среда. Между ними происходит передача тепла через стенку из металла. Именно она получила название — поверхность теплообмена. Основными элементами такого теплообменника являются гофрированные пластины. Эти элементы достаточно тонкие и изготавливаются методом штампования.

     Применяются пластинчатые теплообменники, как нагревательные или охладительные устройства. Их используют в разных технологических процессах, а также в нефтяной, газовой промышленности и во многих других отраслях. На фото ниже представлен пластинчатый теплообменник в индивидуальном тепловом пункте многоквартирного дома.

Здесь он используется для подогрева холодной воды в систему ГВС дома, система горячего водоснабжения при этом закрытая.

Кожухотрубные теплообменники

Поэтому очень часто расчет такого аппарата плавно перетекает в расчет кожухотрубного теплообменника. Это аппарат, в котором пучок труб находится в едином корпусе (кожухе), омываемым различными теплоносителями, в зависимости от назначения оборудования. В конденсаторах, например, хладагент запускают в кожух, а воду – в трубки. При таком способе движения сред удобнее и эффективнее контролировать работу аппарата. В испарителях, наоборот, хладагент кипит в трубках, а они при этом омываются охлаждаемой жидкостью (водой, рассолами, гликолями и др.). Поэтому расчет кожухотрубного теплообменника сводится к минимизации габаритов оборудования. Играя при этом диаметром кожуха, диаметром и количеством внутренних труб и длиной аппарата, инженер выходит на расчетное значение площади теплообменной поверхности.

Использование теплообменников пластинчатого типа для обеспечения ГВС

Такой способ хорош тем, что происходит полезное использование тепла обратной воды, а также тем, что схема компактна.
В новом теплообменнике это достигается путем увеличения количества пластин одинаковой площади.
На схеме представлен пластинчатый теплообменник для отопления самой простой конструкции с патрубками, расположенными по разные стороны агрегата. На подогрев поступает уже не совсем холодная, а теплая.
В системах с естественной циркуляцией такой тип установки малоэффективен

В ИТП Зависимое подключение отопления с автоматическим регулированием расхода тепла.
Важно и то, что никто не способен дать гарантии того, что эти расчет будут на процентов верными. Такой же фильтр желательно установить на вводе холодной воды — дольше будет работать оборудование

В итоге себестоимость горячей воды за литр будет намного ниже. Пластины пластинчатого теплообменника располагаются одна за другой с поворотом на градусов.

Строение у них более сложное, стоимость выше, но они способны отбирать максимум тепла высокий КПД. Схема сборки пластинчатого теплообменника не сложная, верхняя и нижняя направляющие закрепляются на штативе и неподвижной плите. Схемы подключения ПТО Схемы подключения пластинчатых теплообменников Здесь вы сможете узнать, какие бывают схемы подключения пластинчатых теплообменников к сетям коммуникаций. Ввиду небольших габаритов и веса монтаж теплообменника производится достаточно просто, хотя мощные агрегаты и требуют устройства фундамента.

Поговорим подробнее о наиболее доступных, надежных и эффективных. Мощность зависит от общей площади теплообмена, перепада температур в обоих контурах между входов и выходом и даже от числа пластин. При такой схеме подготовка воды происходит за два шага. Обвязка второй ступени идентичная параллельному подключению за исключением того, что вместо холодной воды подключается уже подогретая вода с первой ступени.

Строение у них более сложное, стоимость выше, но они способны отбирать максимум тепла высокий КПД. В соответствии с правилами помимо рабочего насоса параллельно ставится резервный такой же мощности. Опыт и умения специалистов позволяют как выполнить простейшие расчеты, так и сложный монтаж с пуско-накладкой. Тогда пластины производятся из титана, никеля и различных сплавов, а прокладки — из фторкаучука, асбеста и других материалов. Следует отметить, что кожухотрубные системы почти исчезли с рынков из-за низких показателей КПД и больших размеров.
Теплообменник пластинчатый принцип работы

Виды теплообмена

Теперь поговорим о видах теплообмена — их всего три. Радиационный — передача теплоты за счет излучения. Как пример, можно вспомнить принятие солнечных ванн на пляже в теплый летний день. И такие теплообменники даже можно встретить на рынке (ламповые нагреватели воздуха). Однако чаще всего для обогрева жилых помещений, комнат в квартире мы покупаем масляные или электрические радиаторы. Это пример другого типа теплообмена — конвекционного. Конвекция бывает естественной, вынужденной (вытяжка, а в коробе стоит рекуператор) или с механическим побуждением (с вентилятором, например). Последний тип намного эффективнее.

Однако самый эффективный способ передачи теплоты — это теплопроводность, или, как её ещё называют, кондукция (от англ. conduction — «проводимость»). Любой инженер, собирающийся провести тепловой расчет теплообменника, прежде всего задумывается о том, чтобы выбрать эффективное оборудование в минимальных габаритах. И достичь этого удаётся именно за счет теплопроводности. Примером тому служат самые эффективные на сегодняшний день ТОА — пластинчатые теплообменники. Пластинчатый ТОА, согласно определению, — это теплообменный аппарат, передающий теплоту от одного теплоносителя другому через разделяющую их стенку. Максимально возможная площадь контакта между двумя средами в совокупности с верно подобранными материалами, профилем пластин и их толщиной позволяет минимизировать размеры выбираемого оборудования при сохранении исходных технических характеристик, необходимых в технологическом процессе.

Принцип работы теплообменника

Рассмотрим пластинчатый паяный теплообменник для систем отопления, который собран на заводе. У него есть четыре выхода (два контура). Теплообменник служит разделителем потоков по температуре, по давлению. Таким образом, можно разделить различные теплоносители,  жидкости и кислоты.

Разберём принцип работы теплообменника для отопления в доме. На один контур теплообменника подключаются теплые полы, а на другой контур — теплоцентраль (подача и обратка). Напрямую подключать центральный теплоноситель к теплым полам нельзя, так как это может привести к их порче за короткий промежуток времени. На это есть ряд весомых причин

  • в центральных теплосетях большое давление.
  • большая температура
  • в теплоносителе содержится много химических реактивов и растворенного железа.

Теплообменник состоит из трех групп пластин:

  1. Набранная пластина из центральной системы отопления с большой температурой и высоким давлением,
  2. Набранная пластина автономной системы отопления с небольшим давлением,
  3. Разделительная пластина, которая имеет небольшую толщину и осуществляет процесс передачи тепла от центральной системы отопления к автономной системе.

Мощность теплообменника зависит от количества пластин и их размеров. На любой теплообменник необходимо поставить очистительный фильтр, который будет удерживать различные грубые частицы (стружки, окалины, мелкие частицы). Периодически его необходимо промывать специальными средствами. В настоящее время на рынке представлен большой выбор подобных средств.

Советы по самостоятельному ведению работ

Прежде чем взяться за монтаж двухтрубной системы отопления, необходимо подобрать трубы подходящего диаметра.

Для тупиковой сети небольшого дома, где планируется принудительная циркуляция теплоносителя, это сделать несложно: на магистрали принимается труба диаметром 20 мм, для подводок к радиаторам — 16 мм. В двухэтажном доме площадью до 150 м ² требуемый расход обеспечат трубы диаметром 25 мм, подводки остаются такими же.

При коллекторной схеме подводки выполняются трубами 16 мм, а прокладка магистралей к коллектору выполняется из трубопроводов 25-32 мм в зависимости от площади этажей. В остальных случаях за расчетом рекомендуется обращаться к специалистам по проектированию, они помогут выбрать оптимальную схему и размеры всех ветвей.

Для монтажа отопления дома своими руками следует подобрать трубы из подходящего материала из перечня:

  1. Металлопластиковые трубопроводы. При сборке на компрессионных фитингах не требуется специальных инструментов, только ключи. Более надежные прессовые соединения выполняются клещами.
  2. Сшитый полиэтилен. Данный материал тоже соединяется компрессионными и прессовыми фитингами, а трубы Rehau — методом расширения и натяга фиксирующего кольца.
  3. Полипропилен. Наиболее дешевый вариант, но требующий некоторых навыков сварки стыков и наличия сварочного аппарата.
  4. Гофрированная нержавеющая труба стыкуется зажимными фитингами.

Трубопроводы из стали и меди не рассматриваются, поскольку сделать из них отопление под силу не каждому, здесь требуется умение и опыт. Сборка системы производится начиная от котла с последующим присоединением радиаторов и запорной арматуры.

По окончании сеть проверяется на герметичность с помощью опрессовочного насоса.

Потери тепла через трубы

В городской квартире все просто: и стояки, и подводка к отопительным приборам, и сами приборы находятся в обогреваемом помещении. Какой смысл переживать из-за того, сколько тепла рассеивает стояк, если оно служит той же цели — отоплению?

Однако уже в подъездах многоквартирных домов, в подвалах и в части складских помещений ситуация в корне иная. Обогреть нужно одно помещение, а подвести к нему теплоноситель через другое. Отсюда — попытки минимизировать теплоотдачу труб, по которым горячая вода поступает в батареи.

Теплоизоляция

Самый очевидный способ того, как может быть уменьшена теплоотдача трубы стальной — теплоизоляция этой трубы. Еще двадцать лет назад способов для этого было два: рекомендованный нормативной документацией (утепление стекловатой с обмоткой негорючей тканью; еще раньше внешнюю изоляцию вообще выполняли твердой с использованием гипсового или цементного раствора) и реалистичный: трубы просто заматывались тряпьем.

Сейчас появилась масса вполне адекватных способов ограничить потери тепла: тут и пенопластовые накладки на трубы, и разрезные оболочки из вспененного полиэтилена, и минеральная вата.

При строительстве новых домов эти материалы активно применяются; однако в жилищно-коммунальной системе ограниченность, вежливо говоря, бюджета приводит к тому, что трубы в подвалах по-прежнему просто заматывают сса… гм, рваными тряпками.

Механизмы теплопередачи в расчете теплообменников

Тремя основными видами для осуществления теплообмена являются конвекция, теплопроводность и излучение.

При теплообменных процессах, протекающих в соответствии с принципами механизма теплопроводности, теплоэнергия передается в виде переноса энергии упругих атомных и молекулярных колебаний. Переход данной энергии между разными атомами производится в направлении к снижению.

Расчет характеристик передачи тепловой энергии по принципу теплопроводности осуществляется по закону Фурье

Данные поверхностной площади, коэффициенте теплопроводности, температурном градиенте, периоде прохождения потока применяются для вычисления количества теплоэнергии. Понятием температурного градиента определяется изменение температуры в направлении теплопередачи на ту или иную единицу длины.

Коэффициент теплопроводности является скоростью теплообменного процесса, т.е. количеством тепловой энергии, проходящей через какую-либо единицу поверхности в единицу времени.

Как известно, металлы характеризуются наибольшим коэффициентом теплопроводности относительно других материалов, что обязательно должно учитываться при каких-либо расчетах теплообменных процессов. Что касается жидкостей, то они, как правило, имеют относительно меньший коэффициент теплопроводности по сравнению с телами в твердом агрегатном состоянии.

Вычислить количество передаваемой тепловой энергии для расчета теплообменников, при которых теплоэнергия передается между различными средами через стенку, можно с использованием уравнения Фурье. Она определяется как количество теплоэнергии, проходящей через плоскость, которая характеризуется очень малой толщиной:

После выполнения некоторых математических операций получаем следующую формулу

Можно сделать вывод, что падение температуры внутри стенки производится в соответствии с законом прямой линии.

Установка радиатора и его теплоотдача

Как показала практика, количество тепла, которое отдает батарея отопления, зависит еще и оттого, где ее установить, и как подключить трубы. В зависимости от подключения труб тепловая мощность одного и того же радиатора может остаться 100% или стать меньше на 32%. Самым эффективным считается диагональное подключение при подаче горячей воды сверху, и подключении обратного трубопровода снизу с другой стороны. Именно по такой схеме подключают радиаторы на заводах во время испытания. Самое неэффективное — обратное односторонне подключение (горячая вода подается снизу, а отбирается холодная с той же стороны сверху) — тут потери достигают 32%.

От того, как подключены радиаторы теплоотдача тоже может понижаться или повышаться

Сильно снижают теплоотдачу радиаторов отопления защитные или декоративные экраны, большие подоконники, нависающие над прибором. Значительно понижает эффективность обогрева и установка в нише. И все это нужно учитывать при расчете количества радиаторов, увеличивая пропорционально количество секций. Тогда при любых условиях в доме или квартире будет тепло.

Классификация теплообменного оборудования предприятий

Теплообменными аппаратами называются устройства, предназначенные для обмена теплотой между греющей и обогреваемой рабочими средами. Последние принято называть теплоносителями. Теплообменные аппараты различают по назначению, принципу действия, фазовому состоянию теплоносителей, конструктивным и другим знакам .

По назначению теплообменные аппараты делятся на подогреватели, испарители, конденсаторы, холодильники и т. д.

По принципу действия теплообменные аппараты могут быть разделены на рекуперативные, регенеративные и смесительные.

Рекуперативными называются такие аппараты, в которых тепло от горячего теплоносителя к холодному передается через разделяющую их стенку. Примером таких аппаратов являются паровые котлы, подогреватели, конденсаторы и др.

Регенеративными называются такие аппараты, в которых одна и та же поверхность нагрева омывается то горячим, то холодным теплоносителем. При протекании горячей жидкости тепло воспринимается стенками аппарата и в них аккумулируется, при протекании холодной жидкости это аккумулированное тепло ею воспринимается. Примером таких аппаратов являются регенераторы мартеновских и стеклоплавильных печей, воздухоподогреватели доменных печей и др.

В рекуперативных и регенеративных аппаратах процесс передачи тепла неизбежно связан с поверхностью твердого тела. Поэтому такие аппараты называются также поверхностными.

В смесительных аппаратах процесс теплопередачи происходит путем непосредственного соприкосновения и смешения горячего и холодного теплоносителей. В этом случае теплопередача протекает одновременно с материальным обменом. Примером таких теплообменников являются башенные охладители (градирни), скрубберы и др.

Если участвующие в тепломассообмене горячий и холодный теплоносители перемещаются вдоль поверхности нагрева в одном и том же направлении, тепломассообменный аппарат называют прямоточным, при встречном движении теплоносителей и сред — противоточным, а при перекрестном движении — перекрестноточным. Перечисленные схемы движения теплоносителей и сред в аппаратах называют простыми. В том случае, когда направление движения хотя бы одного из потоков по отношению к другому меняется, говорят о сложной схеме движения теплоносителей и сред.

Другие расчеты

Выполняя расчет площади теплообменника, не стоит забывать и о сопротивлении материалов. Прочностные расчеты ТОА включают проверку проектируемого агрегата на напряжение, на кручение, на прикладывание максимально допустимых рабочих моментов к деталям и узлам будущего теплообменника. При минимальных габаритах изделие должно быть прочным, устойчивым и гарантировать безопасную работу в различных, даже самых напряженных условиях эксплуатации.

Динамический расчет проводится с целью определения различных характеристик теплообменного аппарата на переменных режимах его работы.

О принципе действия

Пластинчатый теплообменник принцип действия имеет достаточно сложный. Пластины в конструкции располагаются под углом в 180 градусов относительно друг друга. Зачастую производители делают это попакетно, следовательно, компонуются сразу четыре изделия и создается пара коллекторных контуров – подача жидкости и «обратка». Хотя стоит знать, что крайние пластины не принимают никакого участия в процессе теплообмена.

Собственно, с принципом действия устройства все более-менее понятно. Сейчас же рассмотрим классификацию данной конструкции – в соответствии с ней теплообменники могут быть трех типов.

  • Одноходовые приборы, в которых теплоноситель циркулирует перманентно, в одном и том же направлении по всей площади системы. Помимо того, здесь имеет место и противоток жидкостей.
  • Многоходовые приборы, которые можно использовать исключительно в тех случаях, когда разница в температуре носителей тепла не слишком высокая. Потоки жидкости здесь будут двигаться в различных направлениях.

Что же касается технических характеристик таких теплообменников, то они следующие:

  • рабочая температура колеблется в пределах между -25 и +200 градусами;
  • потребление рабочей жидкости составляет от 5 до 2 000 кубометров в час;
  • площадь системы – разная, в зависимости от того, с какой целью ее будут использовать.

Теплый пол

Не так давно от полотенцесушителя или комнатного радиатора становился продолжением общей системы отопления в квартире, в разы увеличивая площадь обогревающей поверхности. Но вода в качестве теплоносителя именно в этой ситуации может создать немало проблем.

Как бы ни были надежны стальные трубы, они не вечны, а места соединений, особенно резьбовых, могут со временем дать течь. Только представьте, что это произошло внутри бетонной стяжки, которую так просто не снять. По этой причине теплый пол в водяном исполнении практически не применяется.

Если вы все-таки решили реализовать эту систему, вам придется подумать, как сделать ее максимально эффективной. Мощность должна рассчитываться с предельной точностью. Но если цифры показывают, что теплопередача получается недостаточной, нужно в первую очередь озаботиться повышением эффективности стальных труб.

Поскольку эта конструкция контактирует не с воздухом в помещении, а нагревает материалы пола, сыграть можно только на увеличении протяженности труб. Поэтому их и укладывают компактной, но длинной «змейкой». Благодаря большой площади собственной поверхности она передает много тепла.

Нюанс: при плотной укладке нескольких погонных метров трубы теплоотдача теплого пола в целом возрастет, а каждого отдельного сегмента, не критично, но уменьшится.

Причина в том, что слишком близко расположенные трубы частично налаживают теплообмен друг с другом. Вокруг каждой создается нагретая зона, что приводит к некоторому снижению теплового напора.

Тепловой и конструктивный расчет

Любой расчет рекуперативного теплообменника можно провести на основе результатов теплового, гидравлического и прочностного вычислений. Они являются основополагающими, обязательны при проектировании нового оборудования и ложатся в основу методики расчета последующих моделей линейки однотипных аппаратов. Главной задачей теплового расчета ТОА является определение необходимой площади теплообменной поверхности для устойчивой работы теплообменника и поддержания необходимых параметров сред на выходе. Довольно часто при таких расчетах инженеры задаются произвольными значениями массогабаритных характеристик будущего оборудования (материал, диаметр труб, размеры пластин, геометрия пучка, тип и материал оребрения и др.), поэтому после теплового обычно проводят конструктивный расчет теплообменника. Ведь если на первой стадии инженер посчитал необходимую площадь поверхности при заданном диаметре трубы, например, 60 мм, и длина теплообменника при этом получилась порядка шестидесяти метров, то логичнее предположить переход к многоходовому теплообменнику, либо к кожухотрубному типу, либо увеличить диаметр трубок.

Специальные формулы

Расчет основывается на уравнении теплопередачи Q = F×k×Δt, где Q означает объем теплового потока (Вт), F — площадь поверхности в м2, k — коэффициент передаваемого тепла, а Δt — разность в показателях температур теплоносителей на входе и выходе из агрегата.

Чтобы вычислить площадь поверхности, используют формулу F=Q/k×Δt. Формула теплопередачи учитывает конструктивные особенности агрегата. Рассмотрев их, можно выделить значения t1 и t2, чтобы рассчитать F. Для вычислений используется формула Q=G1cp1(t1вх–t1вых)=G2cp2(t2вых–t2вх), где G1и G2 обозначают расход массы греющего и нагреваемого теплоносителя, cp1 и cp2 — удельную теплоемкость по нормативам. Обмениваясь энергией, теплоносители меняют температуру, поэтому t1вх и t1вых, t2вх и t2вых выводятся в проверочном расчете для сравнения с фактическими температурными показателями

Важно учесть коэффициент теплоотдачи среды и конструктивные особенности теплообменного оборудования. Детальный конструкторский расчет предполагает составление схемы теплообменных агрегатов, включая схему движения теплоносителя

Стандартные размеры элементов и коэффициенты теплоотдачи учитывают в ГОСТах. Чтобы не ошибиться, можно ознакомиться с примерами расчетов для разных типов теплового оборудования. Простые подсчеты выполняются на онлайн-калькуляторе, куда вносятся соответствующие параметры. Для сложных систем понадобятся опыт и знания, а также потребуется соответствующее программное обеспечение. Избежать ошибок можно, если доверить проведение расчетов специалистам.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий