Как сделать расчет расхода теплоносителя для системы отопления – теория и практика

Непосредственный расчет теплоносителя, мощности насоса

Примем величину тепловых потерь на единицу площади, равную 100 Ватт. Тогда, приняв общую площадь дома, равную 150 кв.м, можно вычислить общую тепловую потерю всего дома — 150*100 = 15000 Ватт, или 15 кВт.

Работа циркуляционного насоса зависит от его правильной установки.

Теперь следует разобраться, какое отношение эта цифра имеет к насосу. Оказывается, самое прямое. Из физического смысла следует, что тепловые потери — это постоянный процесс расхода тепла. Чтобы сохранять внутри помещения необходимый микроклимат, необходимо постоянно компенсировать такой расход, а чтобы увеличить температуру в комнате, необходимо не просто компенсировать, а вырабатывать больше энергии, чем нужно на компенсацию потерь.

Однако даже если тепловая энергия имеется, ее еще нужно доставить к тому прибору, который способен рассеивать эту энергию. Таким прибором является радиатор отопления. А вот доставку теплоносителя (обладателя энергии) к радиаторам осуществляет именно циркуляционный насос.

Из всего вышесказанного, можно понять, что суть данной задачи сводится к одному простому вопросу: сколько же нужно воды, нагретой до определенной температуры (то есть с определенным запасом тепловой энергии) необходимо доставлять к радиаторам за определенный промежуток времени, чтобы компенсировать все тепловые потери дома? Соответственно, ответ будет получен в объеме перекачиваемой воды за единицу времени, а это и есть мощность циркуляционного насоса.

Для ответа на этот вопрос необходимо знать следующие данные:

  • то необходимое количество тепла, которое нужно для компенсации тепловых потерь, то есть итог расчета, приведенного выше. Для примера было взято значение 100 Ватт при площади в 150 кв. м, то есть в нашем случае эта величина составляет 15 кВт;
  • удельную теплоемкость воды (это справочные данные), чье значение равно 4200 Джоулей энергии на кг воды на каждый градус ее температуры;
  • температурная разница между той водой, которая выходит из нагревательного котла, то есть первоначальная температура теплоносителя, и той водой, которая поступает в котел с обратного трубопровода, то есть конечная температура теплоносителя.

Стоит заметить, что при нормально работающем котле и всей системы отопления, при нормальной циркуляции воды разность не превышает 20 градусов. В качестве среднего значения можно взять 15 градусов.

Если учесть все вышеописанные данные, то формула для расчета насоса примет вид Q = G/(c*(Т1-Т2)), где:

  • Q — расход теплоносителя (воды) в системе отопления. Именно такое количество воды при определенном температурном режиме должен доставлять циркуляционный насос к радиаторам за единицу времени, чтобы компенсировать тепловые потери данного дома. Если приобрести насос, который будет обладать гораздо большими мощностями, то это просто повысит расход электрической энергии;
  • G — тепловые потери, рассчитанные в предыдущем пункте;
  • Т2 — температура воды, которая вытекает из газового котла, то есть та температура, до которой требуется нагреть определенное количество воды. Как правило, эта температура равна 80 градусам;
  • Т1 — температура воды, которая втекает в котел с обратного трубопровода, то есть температура воды после процесса теплопередачи. Как правило, она равна 60-65 градусам.;
  • с — удельная теплоемкость воды, как уже было сказано, она равна 4200 Джоулей на кг теплоносителя.

Если подставить все полученные данные в формулу и преобразовать все параметры до одних и тех же единиц измерения, то получим результат в 2,4 кг/с.

Расчёт объёма радиаторов и батарей отопления

Биметаллический радиатор отопления в разрезе

Для выполнения точного вычисления необходимо знать объём воды в радиаторе отопления. Этот показатель напрямую зависит от конструкции компонента, а также его геометрических параметров.

Также как и при вычислении объема отопительного котла, жидкость заполоняет не весь объем радиатора или батареи. Для этого в конструкции есть специальные каналы, по которым протекает теплоноситель. Корректное вычисление объёма воды в радиаторе отопления может быть выполнено только после получения следующих параметров прибора:

  • Межосевое расстояние между прямыми и обратным трубопроводами в батареи. Оно может составлять 300, 350 или 500 мм;
  • Материал изготовления. В чугунных моделях наполнение горячей водой намного больше, чем в биметаллических или алюминиевых;
  • Количество секций в батареи.

Лучше всего узнать точный объём воды в отопительном радиаторе из технического паспорта. Но если такой возможности нет – можно взять в расчет примерные величины. Чем больше межосевое расстояние у батареи – тем больший объем теплоносителя в ней поместится.

Чугунные батареи, объем л.

Для расчета общего объема воды в системе отопления с панельными металлическими радиаторами следует узнать их тип. Их вместимость зависит от количества нагревательных плоскостей — от 1 до 2-х:

  • У 1 типа батареи на каждые 10 см приходится 0,25 объема теплоносителя;
  • Для 2 типа этот показатель увеличивается до 0,5 л на 10 см.

Полученный результат необходимо умножить на количество секций или общую протяженность радиатора (металлического).

Для правильного расчета объема отопительной системы отопления с дизайнерскими радиаторами нестандартной формы нельзя применять вышеописанную методику. Их объем моно узнать только у производителя или его официального представителя.

Проектирование отопления дома

Пошаговое описание процесса монтажа отопленияШаг первый

Рассчитать мощность и типа котла

От мощности котла зависит эффективность всей отопительной системы. Если вы выбрали слабый котел, то готовьтесь к дополнительным тратам.

Выбрать схему подключения радиаторов

Система подключения радиаторов отопления может быть однотрубной, двухтрубной, лучевой или выполнена по схеме Тихельмана

Монтаж котла, обвязка, подключение радиаторов

На этом этапе следует тщательно продумать схему обвязки котла, подключения радиаторов, циркуляционного насоса, расширительного бака и других элементов

Заполнение системы теплоносителем и запуск

На последнем шаге остается только наполнить систему водой или антифризом, а потом запустить и протестировать систему отопления.

Для обеспечения комфортного проживания в холодное время года еще на этапе проецирования частного дома нужно позаботиться о расчете и монтаже отопления. Правильно произведенные тепловые калькуляции позволят определить оптимальную и экономически выгодную отопительную систему. Любая погрешность может привести к тому, что вы будете мерзнуть либо в здание будет жарко и душно.

Самостоятельные расчеты не окажутся проблемой для людей с техническим образованием. Однако не каждый обладает физико-математическими навыками, поэтому хорошим путеводителем в подсчетах будет онлайн калькулятор. Он поможет выявить тепловые потери дома и вычислить мощность, которой должен обладать котел. Так же определит количество необходимых радиаторов и сколько должно быть в нем секций. Сделает за вас расчет затрат на отопление, что пригодится для выбора подходящего источника тепла. Соберите нужные данные для вычисления.

Определите тепловые потери. Для этого, необходимо знать, из какого материала построены внешние стены и напольные покрытия, чем утеплены и их толщину. Измерьте площадь дома, окон и наружных дверей. Высокая интенсивность потери тепла у вентиляции и канализации. Их тоже нужно учитывать в расчетах.

Климатические условия местонахождения дома играют важную роль в выборе отопительной системы. Узнайте среднегодовую и минимальную температуру в вашем регионе, а также среднюю скорость ветра.

Расчёт счётчика тепла

Расчёт счётчика тепла заключается в выборе типоразмера расходомера. Многие ошибочно считают, что диаметр расходомера должен соответствовать диаметру трубы на которой он установлен.

Диаметр расходомера счётчика тепла должен выбираться исходя из его расходных характеристик.

  • Qmin – минимальный расход, м³/ч
  • Qt – переходной расход, м³/ч
  • Qn – номинальный расход, м³/ч
  • Qmax – максимально допустимый расход, м³/ч

0 – Qmin – погрешность не нормируется – допускается длительная работа.

Qmin – Qt – погрешность не более 5% – допускается длительная работа.

Qt – Qn (Qmin – Qn для расходомеров второго класса для которых значение Qt не указано) – погрешность не более 3% – допускается длительная работа.

Qn – Qmax – погрешность не более 3% – допускается работа не более 1 часа в сутки.

Рекомендуется подбирать расходомеры счётчиков тепла таким образом, чтобы расчётный расход попадал в диапазон от Qt до Qn, а для расходомеров второго класса для которых не указано значение Qt в диапазон расходов от Qmin до Qn.

При этом следует учесть возможность уменьшения расхода теплоносителя через счётчик тепла, связанную с работой регулирующей арматуры и возможность увеличения расхода через теплосчётчик, связанную с нестабильностью температурного и гидравлического режима тепловой сети. Нормативными документами рекомендуется подбирать счётчик тепла с ближайшим в большую сторону значением номинального расхода Qn к расчётному расходу теплоносителя. Подобный подход к выбору счётчика тепла практически исключает возможность увеличения расхода теплоносителя выше расчётного значения, что довольно часто приходится делать в реальных условиях теплоснабжения.

Выше приведенный алгоритм выводит список счётчиков тепла которые с заявленной точностью смогут учесть расход в полтора раза превышающий расчётный и в три раза меньший от расчётного расхода. Счётчик тепла выбранный таким образом позволит при необходимости в полтора раза увеличить расход на объекте и в три раза уменьшить его.

Особенности учет тепловой мощности

Как правило, при строительстве зданий различного назначения, все теплотехнические расчеты производятся в Гкал и основная причина этого – приближенность получаемых данных к реальной ситуации и возможность получения достоверных данных, которые будут максимально достоверны как для крупного промышленного объекта, так и для небольшого здания. То есть, с использованием данной единицы измерения можно правильно и точно рассчитать количество необходимой тепловой энергии, достаточной для того, чтобы создать оптимальный температурный режим в помещении.

Но при этом, рассчитывая необходимое количество тепловой энергии, важно понимать, что ее получение будет обеспечиваться за счет работы отопительного оборудования. А технические возможности оборудования определяются как мощность и измеряются в кВт

Таким образом, появляется необходимость в переводе одной величины в другую, то есть надо выбрать котел или другое теплогенерирующее оборудование, мощности которого хватит для производства нужного количества тепловой энергии, измерение которой производится в Гкал.

Также следует обратить внимание и на то, что необходимость в переводе кВт в Гкал появляется и в том случае, если используются счетчики тепла, учет потребления в которых ведется именно в кВт, то есть, по сути, определяются мощностные характеристики теплоносителя, прокачиваемого через систему отопления. Хотя нужно обратить внимание на то, что многие теплосчетчики, особенно отечественного производства, адаптированы к российской системе учета и показывают именно потребление тепловой энергии, то есть ведут учет в Гкал

В этом случае потребителю не надо заниматься дополнительными вычислениями, но в остальных – нужно знать, как перевести значения, полученные в кВт в Гкал.

Скорость движения воды в трубах системы отопления.

На лекциях нам говорили, что оптимальная скорость движения воды в трубопроводе 0,8-1,5 м/с. На некоторых сайтах встречаю подобное (конкретно про максимальную в полтора метра в секунду).

НО в методичке сказано принимать потери на метр погонный и скорости — по приложению в методичке. Там скорости ну совсем другие, максимальная, что есть в табличке — как раз 0,8 м/с.

И в учебнике встретил пример расчета, где скорости не превышают 0,3-0,4 м/с.

Дак в чем же суть? Как вообще принимать (и как в реальности, на практике)?

Скрин таблички из методички прилагаю.

За ответы всем заранее спасибо!

Ты чего хочешь-то? «Военную тайну» (как на самом деле надо делать) узнать, или курсовик сдать? Если только курсовик — то по методичке, которую преподаватель и написал и ничего иного не знает и знать не хочет. И если сделаешь как надо, еще и не примет.

0.036*G^0.53 — для стояков отопления

0.034*G^0.49 — для ммагистралей ветки, пока нагрузка не уменьшится до 1/3

0.022*G^0.49 — для концевых участков ветки с нагрузкой в 1/3 от всей ветки

В курсовике то я посчитал как по методичке. Но хотел узнать, как по делу обстановка.

Тоесть получается в учебнике (Староверов, М. Стройиздат) тоже не верно (скорости от 0,08 до 0,3-0,4). Но возможно там только пример расчета.

Offtop: Тоесть вы тоже подтверждайте, что по сути старые (относительно) СНиПы вполне ничем не уступают новым, а где то даже лучше. (нам об этом многие преподаватели говорят. По ПСП вообще декан говорит, что их новый СНиП во многом противоречит и законам и самому себе).

Но в принципе все пояснили.

а расчет на уменьшение диаметров по ходу потока вроде экономит материалы. но увеличивает трудозатраты на монтаж. если труд дешевый-возможно имеет смысл. если труд дорогой — никакого смысла нет. И если на большои длине (теплотрасса) изменение диаметра выгодно -в пределах дома возня с этими диаметрами не имеет смысла.

и еще есть понятие гидравлическои устойчивости системы отопления — и здесь выигрывают схемы ShaggyDoc

Каждый стояк (верхняя разводка) отключаем вентилем от магистрали. Дак вот встречал, что сразу после вентиля ставят краны двойной регулировки. Целесообразно?

И чем отключать сами радиаторы от подводок: вентилями, или ставить кран двойной регулировки, или и то и то? (тоесть если бы этот кран мог полностью перекрывать трупровод — то вентиль тогда вообще не нужен?)

И с какой целью изолируют участки трубопровода? (обозначение — спиралью)

Система отопления двухтрубная.

Мне конкретно по подающему трубопроводу узнать, вопрос выше.

У нас есть коэффициент местного сопротивления на вход потока с поворотом. Конкретно применяем на вход через жалюзийную решетку в вертикальный канал. И коэффициент этот равен 2,5 — что есть не мало.

Тоесть как бы так придумать, чтобы избавиться от этого. Один из выходов — если решетка будет «в потолке», и тогда входа с поворотом не будет (хотя небольшой все же будет, так как воздух будет стягиваться по потолку, двигаясь горизонтально, и двигаться к этой решетке, поворачивать на вертикальное направление, но по логике это должно быть меньше, чем 2,5).

В многоквартирном дме решетку в потолке не сделаешь, соседи. а в одноквартирном — потолок не красивый с решеткой будет, да и мусор может попасть. тоесть проблему так не решить.

часто сверлю, потом затыкаю

Возьмите тепловую мощность и начальную с конечной температуры. По этим данным Вы совершенно достоверно посчитаете

скорость. Она, скорее всего, будет максимум 0.2 м\С. БОльшие скорости — нужен насос.

Открытая и закрытая системы отопления

Открытые баки используются для отопительных систем, где теплоноситель циркулирует самотеком. Емкость обычно имеет цилиндрическую или прямоугольную форму с открытым верхом, соединение с системой отопления осуществляется через выход на дне.

Недостатков использования открытых баков намного больше:

  • необходимо регулярное обслуживание;
  • теплопотери в системе довольно высокие;
  • внутренние стенки бака подвержены коррозии;
  • при монтаже требуется дополнительная прокладка труб;
  • монтаж осуществляется на чердаке, что требует дополнительного усиления перекрытий из-за большого веса бака.

Пример расширительного бака открытого типа из нержавейки

Закрытые баки могут использоваться для любой отопительной системы, но обычно они востребованы для принудительного отопления. Бак закрытый, то есть контакт теплоносителя и окружающего воздуха исключен. Кроме того, герметичные бачки могут быть оснащены автоматическими или ручными клапанами, манометрами для замера давления в системе.

Преимуществ подобного оборудования множество:

  • бак можно монтировать в котельной, он не требует защиты от промерзания;
  • уровень давления в системе может быть довольно высокий;
  • бак более защищен от коррозии, его эксплуатационные сроки большие;
  • теплоноситель не испаряется;
  • отсутствуют теплопотери;
  • уход за системой более простой, нет необходимости следить за давлением, уровнем воды.

Расширительный бак закрытого типа WESTER

Закрытый мембранный бак

Для мембранной системы используется герметичный бак, функционирование которого схоже с обычным закрытым. Принцип работы очень простой – при нагреве теплоноситель расширяется, «лишняя» вода поступает в одно отделение бака, оказывая давление на эластичную мембрану. При остывании давление снижается, воздух из второй емкости выталкивает прохладную воду назад в систему, то есть происходит ее циркуляция.

Мембрана может быть съемной или несъемной, она не соприкасается с внутренними стенками устройства. Если мембрана повреждена, ее необходимо заменить, так как бак перестает функционировать.

Среди преимуществ использования такого оборудования необходимо отметить:

  • компактные размеры бака;
  • теплоноситель не испаряется;
  • теплопотери системы минимальные;
  • система защищена от коррозии;
  • есть возможность работы с высоким давлением без опасения повреждения системы.

Мембранный расширительный бак

Расчет объема воды в системе отопления с онлайн калькулятором

Каждая отопительная система обладает рядом значимых характеристик – номинальную тепловую мощность, расход топлива и объем теплоносителя. Расчет объема воды в системе отопления требует комплексного и скрупулезного подхода. Так, вы сможете выяснить, котел, какой мощности выбрать, определить объем расширительного бака и необходимое количество жидкости для заполнения системы.

Значительная часть жидкости располагается в трубопроводах, которые в схеме теплоснабжения занимают самую большую часть.

Поэтому для расчета объема воды нужно знать характеристики труб, и важнейший из них – это диаметр, который определяет вместимость жидкости в магистрали.

Если неправильно сделать расчеты, то система будет работать не эффективно, помещение не будет прогреваться на должном уровне. Сделать корректный расчет объемов для системы отопления поможет онлайн калькулятор.

Калькулятор объема жидкости в отопительной системе

В системе отопления могут использоваться трубы различных диаметров, особенно в коллекторных схемах. Поэтому объем жидкости вычисляют по следующей формуле:

Рассчитывается объем воды в системе отопления можно также как сумма ее составляющих:

В сумме эти данные позволяют рассчитать большую часть объема системы отопления. Однако кроме труб в системе теплоснабжения есть и другие компоненты. Чтобы произвести расчет объема отопительной системы, включая все важные компоненты теплоснабжения, воспользуйтесь нашим онлайн калькулятором объема системы отопления.

Совет

Сделать вычисление с помощью калькулятора очень просто. Нужно ввести в таблицу некоторые параметры, касающиеся типа радиаторов, диаметра и длины труб, объема воды в коллекторе и т.д. Затем нужно нажать на кнопку «Рассчитать» и программа выдаст вам точный объем вашей системы отопления.

Проверить калькулятор можно, используя указанные выше формулы.

Пример расчета объема воды в системе отопления:

Значения объемов различных составляющих

Объем воды в радиаторе:

  • алюминиевый радиатор — 1 секция — 0,450 литра
  • биметаллический радиатор — 1 секция — 0,250 литра
  • новая чугунная батарея 1 секция — 1,000 литр
  • старая чугунная батарея 1 секция — 1,700 литра.

Объем воды в 1 погонном метре трубы:

  • ø15 (G ½») — 0,177 литра
  • ø20 (G ¾») — 0,310 литра
  • ø25 (G 1,0″) — 0,490 литра
  • ø32 (G 1¼») — 0,800 литра
  • ø15 (G 1½») — 1,250 литра
  • ø15 (G 2,0″) — 1,960 литра.

Чтобы посчитать весь объем жидкости в отопительной системе нужно еще добавить объем теплоносителя в котле. Эти данные указываются в сопроводительном паспорте устройства или же взять примерные параметры:

  • напольный котел — 40 литров воды;
  • настенный котел — 3 литра воды.

Выбор котла напрямую зависит от объема жидкости в системе теплоснабжения помещения.

Основные виды теплоносителей

Существует четыре основных вида жидкости, используемых для заполнения отопительных систем:

  1. Вода – максимально простой и доступный теплоноситель, который может использоваться в любых отопительных системах. Вместе с полипропиленовыми трубами, которые предотвращают испарение, вода становится практически вечным теплоносителем.
  2. Антифриз – этот теплоноситель обойдется уже дороже воды, и используется в системах нерегулярно отапливаемых помещений.
  3. Спиртосодержащие теплоносители – это дорогостоящий вариант заполнения отопительной системы. Качественная спиртосодержащая жидкость содержит от 60% спирта, около 30% воды и порядка 10% объема составляют другие добавки. Такие смеси обладают отличными незамерзающими свойствами, но огнеопасны.
  4. Масло – в качестве теплоносителя используется только в специальных котлах, но в отопительных системах практически не применяется, так как эксплуатация такой системы обходится очень дорого. Также масло очень долго разогревается (необходим разогрев, как минимум, до 120°С), что технологически очень опасно, при этом и остывает такая жидкость очень долго, поддерживая высокую температуру в помещении.

В заключении стоит сказать, что если система отопления модернизируется, монтируются трубы или батареи, то нужно произвести перерасчет ее общего объема, согласно новым характеристика всех элементов системы.

Общие расчеты

Определять общую емкость отопления необходимо, чтобы мощности отопительного котла хватило для качественного обогрева всех помещений. Превышение показателей допустимого объема может привести к повышению износа отопительного прибора, а также значительному расходу электроэнергии.

Необходимое количество теплоносителя рассчитывается согласно следующей формуле: Общий объем = V котла + V радиаторов + V труб + V расширительного бачка

Отопительный котел

Определиться с показателем емкости котла позволяет вычисление мощности нагревательного агрегата. Для этого достаточно взять за основу соотношение, при котором 1 кВт тепловой энергии достаточно для эффективного обогрева 10 м2 жилплощади. Данное соотношение является справедливым при наличии потолков, высота которых составляет не более 3-х метров.

Как только станет известен показатель мощности котла, достаточно отыскать подходящий агрегат в специализированном магазине. Объем оборудования каждый производитель указывает в паспортных данных.

Поэтому в случае выполнения правильного расчета мощности проблем с определением нужного объема не возникнет.

Чтобы определить достаточный объем воды в трубах, необходимо вычислить поперечное сечение трубопровода согласно формуле – S = π × R2, где:

  • S – поперечное сечение;
  • π – постоянная константа, равная 3,14;
  • R – внутренний радиус труб.

Рассчитав значение площади поперечного сечения труб достаточно умножить его на общую длину всего трубопровода в системе отопления.

Расширительный бак

Определить, какой емкостью должен обладать расширительный бак, можно, располагая данными о коэффициенте температурного расширения теплоносителя. У воды этот показатель составляет 0,034 при подогреве до 85 оС.

Выполняя расчет достаточно воспользоваться формулой: V-бака = (V сист × K) / D, где:

  • V-бака – необходимый объем расширительного бачка;
  • V-сист – общий объем жидкости в остальных элементах системы отопления;
  • K – коэффициент расширения;
  • D – эффективность расширительного бачка (указывается в технической документации).

В настоящее время существует широкое разнообразие отдельных типов радиаторов для отопительных систем. Помимо функциональных различий все они имеют разную высоту.

Чтобы рассчитать объем рабочей жидкости в радиаторах, необходимо для начала подсчитать их количество. После чего умножить данную сумму на объем одной секции.

Узнать объем одного радиатора можно, воспользовавшись данными из технического паспорта изделия. При отсутствии такой информации можно сориентироваться согласно усредненным параметрам:

  • чугунные – 1,5 л на секцию;
  • биметаллические – 0,2-0,3 л на секцию;
  • алюминиевые – 0,4 л на секцию.

Понять, как правильно рассчитать значение позволит следующий пример. Допустим, имеется 5 радиаторов, изготовленных из алюминия. Каждый обогревательный элемент содержит по 6 секций. Производим расчет: 5×6×0,4 = 12 л.

Как видно, расчет емкости отопления сводится к вычислению суммарного значения четырех вышеуказанных элементов.

Определить необходимую емкость рабочей жидкости в системе с математической точностью удается не каждому. Поэтому, не желая выполнять расчет, некоторые пользователи действуют следующим образом. Для начала заполняют систему примерно на 90%, после чего проверяют работоспособность. Далее стравливают скопившийся воздух и продолжают заполнение.

В процессе эксплуатации отопительной системы происходит естественный спад уровня теплоносителя в результате конвекционных процессов. При этом происходит потеря мощности и производительности котла. Отсюда вытекает необходимость наличия резервной емкости с рабочей жидкостью, откуда можно будет отслеживать убыток теплоносителя и при необходимости производить его пополнение.

Расчет тепловых потерь

Такой расчет можно выполнить самостоятельно, так как формула уже давно выведена. Однако расчет расхода тепла достаточно сложный и требует рассмотрения сразу нескольких параметров.

https://www.youtube.com/watch?v=dFLW96z0YVk

Если говорить просто, то сводится он только к определению потерь тепловой энергии, выраженной в мощности теплового потока, которую во внешнюю среду излучает каждый квадратный м площади стен, перекрытий, пола и крыш здания.

Если брать среднее значение таких потерь, то они будут составлять:

  • около 100 Ватт на единицу площади — для среднестатистических стен, например, кирпичных стен нормальной толщины, с нормальной внутренней отделкой, с установленными двойными стеклопакетами;
  • больше 100 Ватт или значительно больше 100 Ватт на единицу площади, если речь идет о стенах с недостаточной толщиной, неутепленных;
  • около 80 Ватт на единицу площади, если речь идет о стенах с достаточной толщиной, имеющих наружную и внутреннюю теплоизоляцию, с установленными стеклопакетами.

Для определения этого показателя с большей точностью выведена специальная формула, в которой некоторые переменные являются табличными данными.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий