Как устроен электросчетчик
Устройство однофазного электрического счетчика прямого включения Энергомера сейчас будет хорошо видно на фотографиях. Напоминаю, его внешний вид – на первом фото статьи.
На счетчике обычно стоят 2 пломбы, одна защищает от несанкционированного доступа клеммы счетчика, вторая – электронную схему счетчика. Этих пломб на моём счетчике уже нет.
Снимаем крышку, видим клеммы
Рассмотрим подробнее клеммы.
Клеммы электросчетчика
Клеммы зажимные, хорошо держат зачищенный провод на всём его протяжении.
Теперь самое интересное – вскрываем корпус счетчика:
Счетчик Энергомера цэ6807п. Снятая передняя панель
Счетчик энергомера. Снятая крышка, фото 2
Достаём потроха внутренности, и видим, что схема электросчётчика состоит их трёх основных частей:
Вынимаем внутренности электросчетчика Энергомера цэ6807п
Это 1) шаговый двигатель, на оси которого закреплены циферки, 2) плата с контроллером и 3) входные клеммы. Как видно, всё китайское (надеюсь, кроме клемм), поэтому и цена такому счетчику 650-750 руб.
Клеммы и плата с контроллером. Всё перевёрнуто, поэтому фазные клеммы счетчика – справа, нулевые – слева, не так как мы привыкли видеть.
Белый и зеленый проводочки – это выход измерительного шунта. Того самого шунта, на котором “оседает” напряжение, пропорциональное току через фазные клеммы. Это напряжение поступает на входы платы КТ1 и КТ2 и подается на обработку контроллеру.
Также с фазной клеммы берется питание для контроллера, это желтый проводок. Питание – бестрансформаторное, через конденсатор, выпрямитель и стабилизатор 5VDC.
Нулевая клемма используется для того, чтобы брать второй полюс для питания счетчика. А ещё для того, чтобы обеспечить соединение, и чтобы ограничить злоумышленные схемы включения счетчика.
С выхода платы контроллера через точки М1.1 и М1.2 поступают импульсы на шаговый двигатель. Тот самый, который тормозят с помощью магнита. Частота импульсов пропорциональна току, и дополнительно индицируется светодиодом.
Этот светодиод используют для проверки и поверки счетчика. Подсчитывают количество импульсов за (например) 5 минут, и смотрят на правильность показаний на передней панели.
В контроллере зашита программа, которая вырабатывает импульсы для работы шагового двигателя.
Вот фото печатной платы счетчика немного крупнее:
Клеммы и плата с контроллером. Ещё фото
Надежность показаний и необходимость ремонта
Качественный цифровой электросчетчик отличается высокой точностью. Проверить параметры без нарушения целостности корпуса и пломб можно так:
- После прекращения подачи напряжения индикатор останавливается. Если учет продолжается – устройство неисправно.
- Счетчик всегда жужжит при работе, о неполадках свидетельствует самоход.
- Показания искажаются при отключении всех бытовых приборов. Обязательно проверяется наличие самохода.
Предлагаем ознакомиться Устройство тэна стиральной машины
Тестирования лучше производить ночью, в условиях минимальной нагрузки на электросеть. Если самохода нет, импульсы индикатора отсутствуют на протяжении 15 минут. Импульс, возникший, когда подключение не произведено, означает поломку.
Электронные электросчетчики
В отличии от индукционных приборов электронные не используют вращающихся механических частей. В них все реализуется с помощью микропроцессорной техники, схема ниже:
ТТ – трансформатор тока
С помощью датчиков тока ДТ и датчиков напряжения ДН снимаются значения тока и напряжения сети. После датчиков сигналы поступают на аналогово-цифровой преобразователь, где сигнал с аналогового превращается в цифровой и поступает на микроконтроллер. Микроконтроллер в свою очередь производит вычисления и отправляет данные на дисплей или через интерфейс на другое устройство. С помощью таких электросчетчиков можно централизовано вести учет электроэнергии различных линий.
Главным достоинством электронных электросчетчиков над индукционными является:
- отсутствие вращающихся частей, что снижает вероятность поломки;
- возможность вести учет электроэнергии по различным тарифам с автоматическим переключением по времени суток (многотарифные счетчики);
- меньшая погрешность измерения, особенно при малых нагрузках;
- возможность передачи данных на расстояние через интерфейсы, что не требует постоянного присутствия для снятия данных;
- удобность применения;
Недостатки:
- большая стоимость;
- большая вероятность выхода из строя при больших скачках напряжения и тока сети;
- более дорогостоящий и трудный ремонт;
- выше чувствительность к климатическим условиям (например перепад температур);
- труднее диагностировать неисправности;
Как подключается счетчики к сети однофазной или трехфазной вы можете посмотреть на видео ниже:
Однофазный:
Трехфазный:
Устройство и принцип работы ИС
Подключения электросчетчика
Перед знакомством с устройством счетчика, в первую очередь, обратим внимание на то, что оно зависит как от принципа его действия, так и от функциональных возможностей. Так, устаревшие индукционные образцы в основном используются в однофазных питающих цепях и не могут обеспечить высокую точность измерений и режим с несколькими тарифами
Для того чтобы понять принцип работы индукционного прибора, следует ознакомиться со всеми деталями его устройства. Классические представители этого класса состоят из следующих основных частей:
- Корпуса, состоящего из двух половинок;
- Двух обмоток с магнитными сердечниками, одна из которых является токовой, а другая – рассчитана на измерение напряжения;
- Противовеса полюсов и алюминиевого диска, насаженного на ось с червячным редуктором;
- Счетного механизма и тормозного магнита.
Простыми словами, работу индукционного счетчика можно представить следующим образом.
Основой измерительной частью прибора являются два электромагнита, изготовленные в виде соленоидов, расположенных под углом 90 градусов. На обмотку одного из них поступает токовая составляющая измеряемой электрической мощности, а на другую катушку подается соответствующее ей напряжение (смотрите фото ниже).
Расположение катушек в счетчике
Важно! В соответствии с электрической схемой учетного узла, его токовая обмотка включается в измерительную цепь последовательно, а катушка напряжения – параллельно. Такой способ их подключения обеспечивает наведение в зазоре между электромагнитными сердечниками суммарной ЭДС, пропорциональной произведению тока и напряжения, то есть мощности
Такой способ их подключения обеспечивает наведение в зазоре между электромагнитными сердечниками суммарной ЭДС, пропорциональной произведению тока и напряжения, то есть мощности.
В это общее для обоих сердечников поле помещается закреплённый на оси алюминиевый диск, передающий вращающий момент через червячный редуктор на простейший счётный механизм. Под воздействием суммарной ЭДС, создаваемой поданным на схему напряжением (оно всегда постоянно) и изменяющимся, в зависимости от нагрузки током, легкий диск начинает вращаться.
Заметьте! Скорость его вращения пропорциональна величине формируемого в зазоре общего э/м поля, а, следовательно – и потребляемой квартирной сетью мощности.
Ответ на вопрос, как работает электромеханический индукционный счетчик, оказывается совсем простым: чем быстрее крутится его диск с меткой в средней части, тем больше расходуется энергии в данной потребительской сети.
Принцип действия 3-х фазного прибора этого же типа ничем существенно не отличается от уже описанного ранее. Разница будет лишь в конструкции счетных узлов и э/м катушек, число которых увеличивается вдвое (по количеству дисков). Внешний вид трехфазного счетчика приведён на рисунке ниже.
3-х фазный индукционный счетчик
По мере совершенствования производственных технологий на смену уже устаревшим устройствам индукционного типа приходят современные электронные приборы, обеспечивающие более высокое качество учёта электроэнергии.
Электросчётчик с дистанционным снятием показаний: особенности, назначение и преимущества
Приборы учёта электроэнергии, оснащённые системой удалённой передачи данных, отлично подойдут тем, кто не желает тратить время на снятие показаний, высчитывание потреблённых киловатт и суммы, которую нужно заплатить за них, а также стояние в очередях в кассу. При установке счётчика с удалённой передачей данных поставщик получает необходимую информацию о потреблённой клиентом электроэнергии в автоматическом режиме без человеческого участия. Подобные приборы также помогают мониторить уровень потребления электроэнергии и на основании полученных данных корректировать свою работу, добиваясь большей эффективности.
Назначение информационно-измерительных систем
Системы, специально разработанные для сбора информации о показателях приборов учёта, осуществляют передачу данных поставщику услуги посредством всемирной сети Интернет. Считывание необходимой информации и последующая отправка данных на сервер энергокомпании-поставщика осуществляется посредством специального программного обеспечения. Функционирование подобных систем полностью автоматизировано.
Счётчики электроэнергии с передачей данных применяются для автоматизации таких процессов, как сбор и отсылка информации поставщику, а также анализ уровня энергопотребления. Задействование информационно-измерительных систем в работе энергетических компаний-поставщиков позволяет не только получить данные о потребляемой электроэнергии, но и приобрести ряд возможностей, ранее недоступных при использовании традиционных приборов учёта. К таким возможностям можно отнести следующее:
- приборы учёта теперь работают в нескольких тарифных режимах;
- потребитель может быть отключён или подключён к системе энергоснабжения удалённо;
- более тесное и эффективное сотрудничество с потребителем, на основании условий договора;
- передача предупреждающих уведомлений, которые точно дойдут до потребителя;
- эффективный анализ полученных данных для более эффективной работы и т.п.
Чтобы снять показания, достаточно нажать всего одну кнопку
Статья по теме:
Какой счетчик электроэнергии лучше поставить в квартире. В публикации мы рассмотрим виды устройств, их преимущества и недостатки, основные критерии выбора, требования о замене счетчиков, правила установки и замены.
Преимущества и недостатки системы автоматической передачи данных
Установив у себя дома электрический счётчик с дистанционным снятием показаний, даже рядовой потребитель электроэнергии получает ряд неоспоримых преимуществ. К достоинствам информационно-измерительных систем следует отнести следующее:
- Помощь в решении споров между потребителем и поставщиком. Поскольку есть возможность ежедневного снятия показаний, то можно исключить конфликты, которые возникают при проблемах с квитанциями или в случае нерегулярной передаче данных абонентом.
- Контроль данных счётчика, установленного, например, в гараже, на даче или в квартире, сдаваемой в аренду.
- Высокая точность расчётов при переключении с одного тарифа на другой. В том случае если показания по дате изменения тарифов отсутствуют, то поставщик электроэнергии осуществляет начисления за предоставленную услугу, опираясь на среднее значение. Традиционно, расчёты выполняются в пользу энергокомпании, а подобные приборы учёта помогают избежать таких недоразумений.
- Возможность дистанционного управления работой электросчётчика позволяет использовать его в системе «умный дом» для предварительного включения обогревательного контура в квартире или доме. Посредством смартфона с установленной специальной программой можно включить систему обогрева за несколько часов до прихода домой.
- Безопасность. В том случае если владелец квартиры или дома забыл выключить электроприборы, то можно обесточить жильё удалённо, отключив прибор учёта со своего смартфона или компьютера.
- Практичность. Пользователь теперь может не тратить время на снятие показаний, передачу данных поставщику и оплату потреблённой электроэнергии.
Электронные счетчики
В своем большинстве, электронные приборы учета не содержат движущихся механических частей. Исключением выступают некоторые виды табло, показания которых изменяются за счет работы шагового электродвигателя, приводящего в действие соответствующие шестерни внутреннего редуктора .
Механическое табло:
Разрабатывались и даже выходили на рынок гибридные варианты приборов учета, содержащие дополнительную функциональность, интегрированную с обычным индукционным счетчиком. Речь идет о системах связи, хранения и удаленного управления. Они не прижились по причине слишком высокой сложности работы, приводящей к снижению общей надежности устройства.
Более простым вариантом стало изготовление прибора учета целиком с использованием электронных компонентов, в число которых входит и «умная» управляющая часть в лице микроконтроллера. Последний, мало того, что выполняет названные функции, так еще и обеспечивает много дополнительных возможностей. К примеру, делает расчет полной мощности нагрузки, используя поступающие данные об активных и реактивных затратах тока от соответствующих датчиков.
Блок-схема внутреннего устройства электронного счетчика:
Для каждой фазы используется своя комбинация трансформаторов тока и напряжения с сенсорами, показания которых поступают на вход микросхемы аналого-цифрового преобразователя, откуда уже в виде кодовых последовательностей идут в микроконтроллер. В свою очередь, он подсчитывает затраченный ток, выводя результат в киловатт-часах. Полученные значения отправляются дальше — на устройство отображения и систему связи (при наличии). Также происходит постоянное сохранение вычисленной информации в энергонезависимую память. Причем в определенные, указанные настройками периоды, микроконтроллер помещает суммарно накопленное потребление в отдельные ячейки, что позволяет получить график мощностей нагрузки за определенные промежутки времени.
Также на «умную» часть прибора учета ложится управление линией, ведущей к конечным клиентским устройствам электронного электросчетчика. Он может по удаленной или прямой команде отключить потребителей или выполнить действие в разрезе условия ограничения мощности. То есть, когда потребление на линии будет больше установленного предела. Названую функциональность обеспечивает непосредственно подключаемое к микроконтроллеру реле, управляющее разрывом линии питания клиентских устройств.
Внутренности электронного счетчика:
Схема электросчетчика в упрощенном варианте, представленном еще в устройстве от Texas Instruments, выглядит следующим образом:
На ней видны все основные элементы, включая трансформатор тока, отмеченный «CT», цифровое табло и обязательный тактовый генератор, нужный всем видам микроконтроллеров. Именно последний и задает скорость работы и время реакции у логической части.
В сущности, любой существующий электронный счетчик электроэнергии построен на тех же элементах, которые и указаны в приведенном приборе. Конечно с тем условием, что у разных производителей будет отличаться элементарная база и могут быть добавлены некоторые компоненты, расширяющие конечную функциональность.
6.3. Организация учета электроэнергии при проектировании индивидуальных жилых домов
Как правило, на весь коттеджный участок, находящийся в ведении одного абонента, должен быть предусмотрен один расчетный счетчик электроэнергии, устанавливаемый на вводе в коттедж. Однако возможны варианты, когда расчетный счетчик может устанавливаться отдельно на вводе в дом, гараж и т.п. Для индивидуальных жилых домов рекомендуется, как правило, применять трехфазный ввод с установкой трехфазного счетчика.
При наличии в индивидуальных жилых домах нагрузки электроотопления более 10 кВт следует устанавливать самостоятельный расчетный счетчик на данную нагрузку.
Приборы учета должны размещаться в специальных шкафах заводского изготовления. Вводной щиток должен размещаться на границе участка индивидуального владения.
Допускается размещать вводной щиток на стене здания, а также внутри здания, в непосредственной близости от входа по согласованию с энергоснабжающей организацией.
На вводе в дом или другое частное сооружение должен устанавливаться защитный аппарат, обеспечивающий защиту от сверхтоков, с номинальным током расцепителя, соответствующим расчетной нагрузке на вводе и разрешенной мощности на присоединение с учетом селективности.
Индукционные (механические) электросчетчики
Рис.1. Индукционный однофазный электросчетчик
Счетчики с вращающимся диском знакомы практически каждому. Это те, за прозрачной панелью которых есть вращающееся колесико. Наверняка многие не раз наблюдали за скоростью его вращения — чем выше скорость, тем больше расход энергии. А показания счетчика обозначаются цифрами на специальных барабанах.
Принцип работы таких счетчиков заключается в следующем. В электрическом счетчике имеется 2 катушки (рис. 2 — 1 и 4 указатели) — катушка напряжения (служит ограничителем переменного тока, преградой для помех и пр., создает магнитный поток, соразмерный напряжению) и токовая катушка (создает переменный магнитный поток, соразмерный току).
Рис.2. Принцип работы индукционного электросчетчика
Магнитные потоки, создаваемые катушками, проникают сквозь алюминиевый диск (рис.2, указатель 5). При этом потоки, которые создает токовая катушка, пронизывают диск несколько раз за счет своей U-образной формы. Как следствие, появляются электромеханические силы, которые и вращают диск.
Далее ось диска взаимодействует со счетным механизмом в виде червячной (зубчато-винтовой) передачи (Рис. 3), которая передает необходимые сигналы и информацию на цифровые барабаны. Чем выше крутящий момент диска, тем выше мощность подаваемого сигнала (крутящий момент равнозначен мощности сети), а значит и расход электроэнергии больше.
Рис.3. Червячная передача
Когда мощность подаваемого электромагнитного сигнала снижается, в действие приходит постоянный магнит торможения (Рис.2, указатель 3). Он и выравнивает колебания частоты вращения диска за счет взаимодействия с вихревыми потоками. Магнит создает электромеханическую силу, обратную кручению диска. Это заставляет диск снизить скорость или вообще остановиться.
Эта группа счетчиков наиболее дешевая и простая. Широко использовались индукционные электросчетчики в советское время (и по нынешнее время у большинства в квартирах установлены именно такие приборы). Но постепенно на смену им приходят электронные счетчики за счет ряда недостатков индукционных приборов. Например, индукционный электросчетчик не может снять показания автоматически, а также в показаниях зачастую присутствует погрешность.
Достоинства
- Надежны в использовании
- Многoлетний срок эксплуатации счетчика
- Независимость от перепадов электрoэнергии
- Дешевле электронных
Недостатки
- Класс точнoсти достаточно низок — 2,0; 2,5
- Практически oтсутствует защищенность от хищения электрической энергии
- Высокое собственное потребление тока
- При малых нагрузках вырастает погрешность (чем меньше класс точности, тем больше погрешность)
- При учете нескольких типов электроэнергии (активной и реактивной) возникает необходимость использования нескольких приборов учета энергии
- Энергоучет ведется в одном направлении
- Крупные габариты приборов
Новые счетчики для экономии
Если в квартире установлен прибор учета, то это позволяет экономить деньги за потребленную воду. Водомер можно и не устанавливать, но тогда расчет с поставщиком услуг будет производиться по повышенному тарифу. А это не выгодно самому квартиросъемщику.
Как мы платим сейчас? Ежемесячно с водомеров горячей и холодной воды снимаем показания, записываем их на бумажном листе и уже с этим листком на руках идем платить за потребленную воду.
Другой вариант — все тот же листок бумаги с цифрами, но показания передаются по телефону.
Мы все привыкли к такому способу взаиморасчетов. Но есть и обратная сторона такого варианта передачи данных. В целях снижения оплаты за потребленную воду, потребители идут на всевозможные ухищрения, чтобы снизить уровень оплаты. Кроме того нередки задержки в оплате и передаче показаний квартирных водомеров, что приводит к расхождению в объемах потребленной воды с общедомовыми приборами учета.
Электронные счетчики воды, способны сами передавать показания за потребленную воду на центральный пункт управляющей компании. Эти показания заносятся в базу и производятся расчеты с поставщиком услуг.
Сам процесс удаленного снятия показаний становится полностью автоматическим. Кроме того снижается вероятность искажения или несвоевременной передачи показаний домашних водомеров.
В итоге управляющие компании избавлены от необходимости содержать штат сотрудников, которые делают поквартирный обход домов с целью сверки показаний. Также отпадает необходимость делать постоянные перерасчеты за потребленную воду.
Передача данных с прибора учета происходит по интернету и беспроводной связи.
Советы по выбору
Чтобы выбранный прибор для дистанционного учета справлялся с поставленной задачей, стоит осознанно подойти к выбору подобных устройств
Существуют ряд критерий, заслуживающих внимание. К таковым относят:
- Защиту от внешних факторов. Прибор индукционного типа хуже сохраняют работоспособность при температурных колебаниях, чем электрические модели. Если устройство будет располагаться за пределами здания, оно не только должно быть надежно защищено от атмосферных осадков, но и обязательно утеплено.;
- Количество тарифов, по которым может производиться оплата за электроэнергию. По данному критерию деление производится на однотарифные и позволяющие поддерживать оплату по нескольким планам;
- Количество фаз. Здесь все зависит от питающего напряжения. Если потребителю поступает 220 В, потребуется однофазная модель, 380 В — трехфазная. Для частных домов, как правило, выбираются однофазные модели. Если строение состоит из нескольких этажей — трехфазные. Последние предъявляют повышенные требования к порядку монтажа. Правильно смонтированное устройство должно обеспечить равномерное распределение нагрузки;
- Мощность и точность.
Современные модели, монтируемые на столбах, способны сохранять работоспособность при отрицательной температуре. Однако они не способны противостоять воздействию атмосферных осадков. Чтобы предотвратить их преждевременных выход из строя, для размещения приборов выбирается сухой герметичный корпус.
Конфигурация и размеры короба напрямую зависят от конструктивных особенностей защищаемого прибора. Если устройство будет монтироваться на сравнительно небольшой высоте, можно выбрать коробку с небольшим окном. В остальных случает потребуется дополнительное пространство для установки модема. Для металлических предусматривается заземление.
Что такое смарт счётчики электроэнергии и как они работают
Нашумевший российский закон об умных счетчиках — ФЗ от 27.12.2018 № 522-ФЗ был утвержден 29 декабря 2018 года. Этим законом вносятся поправки в ФЗ от 26.03.2003 № 35-ФЗ.
Нововведения, которые вступят в свою силу с июля 2020, коснутся пока только системы учёта потреблённой электроэнергии. Умные счетчики воды используются и сейчас, но они не обязательны для всех. Законодатели обещают, что через некоторое время дойдет очередь до счетчиков воды, тепла и газа. Но это случится не в 2020 году, а значительно позже.
Умный счётчик – это прибор учёта нового поколения, умеющий самостоятельно передавать информацию в энергоснабжающую организацию. При этом умный счётчик электроэнергии делает это своевременно и безошибочно. Исключая проблемы человеческого фактора, то есть исчезнет необходимость:
- Вспоминать дату снятия показаний.
- Записывать цифры.
- Звонить в управляющую компанию или передавать данные по Интернету.
Что снимает много утомительных проблем.Кроме того, смарт счётчик может автоматически:
- Менять часовой тариф.
- Защищать оборудование во время аварий, сигнализируя в диспетчерскую службу.
- Информировать об отказе и неисправности в работе квартирного, и общедомового прибора учёта.
- Передавать информацию о попытках несанкционированного доступа к электрическому счётчику и незаконного подключения.
- Показывать собственнику уровень задолженности.
- Сохранять полученные сведения.
Новые счётчики, в отличие от старых индукционных или электронных счётчиков, дополнительно оборудованы контроллером. Устройством, позволяющим достичь смарт целей в области информированности и управляемости потоками электрической энергии.
Интерфейс контроллера надёжно обеспечивает беспроводную передачу информации в интернет с помощью технологий:
- Wi-Fi – с помощью роутера.
- GPRS – посредством сим-карты.
- LPWAN – через вышку, подключённую к серверу.
Умные счётчики электроэнергии во многих российских регионах используются уже сейчас.Такие приборы учёта применяются пока в основном в частном секторе. Их устанавливают на опоре воздушной линии электропередач.
Счётчики такого типа автоматически передают информацию по зашифрованным каналам в специализированный центр учёта. История показаний и потреблённого количества электроэнергии хранится в архиве прибора и в базе данных центра. Потребителям больше не нужно снимать показания и передавать их в Энергосбыт.
Некоторые подобные приборы оснащены специальными пультами, позволяющими потребителю дистанционно контролировать расход электроэнергии, не выходя из дома и без визуального осмотра самого энергомера.
С июля 2020 года необходимо будет устанавливать именно такие приборы учёта, вне зависимости от того, многоквартирный это дом или частный.