Контроллер заряда для солнечной батареи: правила выбора, схема для сборки своими руками

Экономическая обоснованность

Сроки окупаемости солнечных панелей посчитать несложно. Умножьте суточное количество производимой энергии в сутки на количество суток в году и на срок эксплуатации панелей без снижения мощности — 30 лет. Рассмотренная выше электроустановка способна генерировать в среднем от 52 до 100 кВт·ч в сутки в зависимости от продолжительности светового дня. Среднее значение составляет около 64 кВт·ч. Таким образом, за 30 лет электростанция в теории должна выработать 700 тыс. кВт·ч. При одноставочном тарифе в 3,87 руб. и стоимости одной панели около 15 000 руб, затраты окупятся за 4–5 лет. Но реальность более прозаична.

Вопросы и ответы по контроллерам заряда для солнечных батарей

В подавляющем большинстве случаев нет. Это связано с тем, что обычно:

  • мощность инвертора намного превышает максимальную мощность выхода на нагрузку солнечного контроллера
  • большинство инверторов имеют большие емкости на входе и выходе. Эти конденсаторы используются для фильтрации гармоник и помех на входе инвертора. При первом подключении источника постоянного тока эти конденсаторы начинают заряжаться, что приводит к очень большим входным токам инвертора (в сотни ампер) в течение короткого промежутка времени. Этого может быть достаточно для того, чтобы транзисторы на выходе контроллера заряда вышли из строя, даже если контроллер имеет защиту от короткого замыкания в нагрузке. Если инвертор подключен к выходу контроллера, это обычно приводит к срабатыванию защиты контроллера или, в большинстве случаев, выходу его из строя из-за того, что защита контроллера по короткому замыканию не успевает сработать.

Мы не рекомендуем присоединять инвертор к выходу контроллера, даже в том случае, если его номинальная мощность меньше номинальной мощности выхода контроллера. Инвертор может заработать после нескольких попыток (т.е. когда его входной конденсатор зарядится), но это не является нормальным режимом работы.

Поэтому инвертор обычно подключают напрямую к аккумуляторной батарее. Защита аккумулятора от глубокого разряда при этом осуществляется инвертором. Обычно инверторы имеют напряжение защитного отключения примерно 1,75В на банку (т.е. 10,5 В для 12В, для других напряжений нужно умножать на соответствующий коэффициент). “Продвинутые” инверторы могут регулировать напряжение защитного отключению, простые – не могут. Если режимы работы системы таковы, что происходит частое срабатывание защиты инвертора по низкому напряжению аккумуляторов, нужно использовать защитные возможности контроллера. Дело в том, что напряжение срабатывания защиты инвертора соответствует почти полному разряду аккумулятора при типичных токах разряда (около 0,1С). Это приводит к резкому сокращению срока службы аккумулятора.

Солнечные контроллеры рассчитаны на работу именно в регулярных циклических режимах заряда-разряда, поэтому напряжение защитного отключения контроллера обычно значительно выше, около 11,1-11,4 (около 1,87 В на банку 2В). Поэтому при работе защиты по напряжению контроллера, срок службы АБ можно значительно повысить.

Как же правильно подключить инвертор в системе солнечного электроснабжения, учитывая ограничения контроллера, указанные выше?


Для этого нужно подключить к выходу контроллера реле (на соответствующее напряжение постоянного тока 12, 24 или 48В и ток, не превышающий номинальный ток контроллера), с коммутирующими контактами, рассчитанными на максимальный потребляемый инвертором ток. Инвертор должен подключаться к аккумуляторной батарее через эти контакты. В такой схеме защитные функции будет выполнять контроллер заряда. Когда контроллер дает команду на отключение нагрузки из-за разряда аккумулятора, реле обесточивается и его контакты размыкают питающую инвертор цепь. Обращайтесь к нашим специалистам для получения схем подключения.

Диод – для гашения всплесков напряжения в индуктивности обмотки реле, его номинал зависит от выбранного реле. Обычно диода на 1А бывает достаточно. Силовые реле мы не продаем, поищите любые контакторы в электротехнических магазинах.

Примечание.

Разновидности

На сегодняшний день существует несколько типов контроллеров заряда. Рассмотрим некоторые из них.

MPPT-контроллер

Данная аббревиатура расшифровывается как Maximum Power Point Tracking, то есть мониторинг или отслеживание точки, где мощность максимальна. Такие устройства способны понижать напряжение солнечной батареи до напряжения аккумулятора. При таком раскладе сила тока на солнечной батарее уменьшается, в результате чего можно уменьшить сечение проводов и удешевить конструкцию. Также использование данного контроллера позволяет заряжать аккумулятор, когда солнечного света недостаточно, например, в условиях непогоды или ранним утром и вечером. Является наиболее распространенным из-за своей универсальности. Применяется при порядковом подключении. MPPT-контроллер имеет достаточно большой спектр настройки, благодаря чему обеспечивается наиболее эффективная зарядка.

Характеристики устройства:

  • Стоимость таких устройств высокая, однако она окупается при использовании солнечных батарей свыше 1000 Вт.
  • Входное суммарное напряжение в контроллер может достигать 200 В, это значит, что к контроллеру могут быть последовательно подключены несколько солнечных панелей, в среднем до 5. В пасмурную погоду общее напряжение последовательно соединенных панелей остается высоким, благодаря чему обеспечивается бесперебойная подача электроэнергии.
  • Данный контроллер может работать с нестандартным напряжением, например, 28 В.
  • Коэффициент полезного действия MPPT-контроллеров достигает 98%, это означает, что практически вся солнечная энергия преобразуется в электрическую.
  • Возможность подключения аккумуляторов различного типа, таких как свинцовые, литий-железо-фосфатные и другие.
  • Максимальный ток заряда равен 100 А, при данной величине тока максимальная мощность, выдаваемая контроллером может достигать 11 кВт.
  • В основном все модели MPPT-контроллеров способны функционировать при температурах от -40 до 60 градусов.
  • Для начала заряда АКБ необходимо минимальное напряжение в 5 В.
  • Некоторые модели имеют возможность одновременно работать с гибридным инвертором.

Контроллеры данного типа могут применяться как на коммерческих предприятиях, так и на загородных домах, так как имеются различные модели с отличающимися показателями. Для загородного дома подойдет MPPT-контроллер с максимальной мощностью 3,2 кВт, с наибольшим входным напряжением в 100 В. В больших объемах применяются гораздо более мощные контроллеры.

PWM-контроллер

Технология данного устройства проще, чем у MPPT. Принцип работы такого устройства заключается в том, что, пока аккумуляторное напряжение находится ниже придела в 14,4 В, солнечная батарея подключена к аккумулятору практически напрямую, и заряд происходит достаточно быстро, после того, как значение будет достигнуто, контроллер понизит напряжение аккумулятора до 13,7 В, в результате чего аккумулятор зарядится полностью.

Характеристики устройства:

  • Напряжение на входе не более 140 В.
  • Работают с солнечными батареями на 12 и 24 В.
  • КПД практически равен 100%.
  • Возможность работы с множеством аккумуляторов различного типа.
  • Максимальное значение тока на входе достигает 60 А.
  • Температура функционирования от –25 до 55 ºC.
  • Возможность зарядить АКБ для солнечных батарей с нуля.

Таким образом, PWM-контроллеры применяются чаще всего, когда нагрузка не очень велика и солнечной энергии достаточно. Такие устройства больше подходят собственникам небольших загородных домов, где установлены солнечные панели небольшой мощности.

MPPT-контроллер, как уже было сказано выше, на сегодняшний день наиболее популярен, потому что имеет высокий КПД, способен работать даже в условиях недостатка солнечного света. MPPT-контроллер также способен работать на повышенных мощностях, идеально подойдет для большого загородного дома. Однако, при выборе определенного типа нужно учитывать объем входного и выходного тока, а также степень мощности и показатели напряжения.

Установка MPPT-контроллера на маленьких участках нецелесообразна, так как он не окупится. Если суммарное напряжение солнечной батареи больше 140 В, то следует применять MPPT-контроллер. PWM-контроллеры наиболее доступны, так как их цена начинается от 800 рублей. Есть модели за 10 тысяч, когда стоимость MPPT-контроллера примерно равна 25 тысячам.

Расчет и проектирование

Для расчетов солнечной батареи, собранной дома, обязательно потребуется перечень всех электроприборов и оборудования, имеющихся в доме. Сразу же нужно выяснить потребляемую мощность каждого из них.

Данные о мощности указываются в маркировке или в техническом паспорте устройства. Их значения довольно приблизительные, поэтому для панели, работающей с инвертором нужно ввести поправку, то есть среднее энергопотребление умножается на поправочный коэффициент. Полученная таким образом общая мощность дополнительно умножается на 1,2, учитывая потери при работе инвертора. Мощные приборы при запуске потребляют ток, в несколько раз превышающий номинальный. В связи с этим, инвертор также должен в течение короткого времени выдерживать двойную или тройную мощность.

Если мощных потребителей довольно много, но одновременно они практически не включаются, то применяемый в системе инвертор с большим выходным током получится слишком дорогим. При отсутствии значительных нагрузок рекомендуется использовать менее мощные недорогие приборы.

Солнечная батарея в домашних условиях рассчитывается по времени работы каждого электроприбора в течение суток. Вычисленное опытным путем, значение умножается на мощность, и в результате получается суточное энергопотребление, измеряемое в киловатт-часах.

Обязательно понадобятся сведения с местной метеостанции о количестве солнечной энергии, которую можно реально получить в этой местности. Расчет данного показателя выполняется на основе показаний среднегодовой солнечной радиации и ее среднемесячных значений при самой плохой погоде. Последняя цифра позволяет определить минимальное количество электроэнергии, достаточное для решения текущих задач.

Получив исходные данные можно приступать к определению мощности одного фотоэлемента. Вначале показатель солнечной радиации нужно разделить на 1000, в результате, получаются так называемые пикочасы. В это время интенсивность солнечного свечения составляет 1000 Вт/м2.

Формула для расчета

Количество энергии W, вырабатываемое одним модулем, определяется по следующей формуле: W = k*Pw*E/1000, в которой Е – величина солнечной инсоляции за определенный период времени, k – коэффициент, составляющий летом – 0,5, зимой – 0,7, Pw – мощность одного модуля. Поправочный коэффициент учитывает потери мощности фотоэлементов при нагревании солнечными лучами, а также изменение наклона лучей относительно поверхности в течение дня. Зимой элементы нагреваются меньше, поэтому и значение коэффициента будет выше.

Учитывая суммарную мощность энергопотребления и данные, полученные с помощью формулы, рассчитывается общая мощность фотоэлементов. Полученный результат делится на мощность 1 элемента и в итоге будет требуемое количество модулей.

Существуют различные модели с целым рядов мощностей элементов – от 50 до 150 Вт и выше. Выбирая компоненты с необходимыми показателями, можно собрать солнечную панель с заданной мощностью. Например, если потребность в электроэнергии составляет 90 Вт, то необходимы два модуля по 50 Вт каждый. По такой схеме можно создать любую комбинацию из имеющихся фотоэлементов. В любом случае расчеты следует производить с некоторым запасом.

Количество фотоэлементов оказывает влияние на выбор емкости аккумуляторной батареи, поскольку именно они создают зарядный ток. Если мощность панели 100 Вт, то минимальная емкость АКБ должна быть 60 А*ч. С возрастанием мощности панелей потребуются и более мощные аккумуляторы.

Определение солнечной батареи

Конструктивно солнечная батарея представляет собой схему преобразователя одного вида энергии в другой. В частности, энергия света преобразуется в электрическую энергию. Причём результатом преобразования становится электрический ток постоянной величины.

Активными элементами конструкции солнечной панели выступают полупроводники, обладающие свойствами фотохимического синтеза. Например, кремний (Si), применением которого были отмечены самые первые исследования в области получения электричества солнца.

Простейший набор из солнечной панели и автомобильного аккумулятора уже составляет конструкцию настоящей домашней энергетической установки

На текущий момент кремний уже не рассматривается безальтернативным химическим элементом, опираясь на который есть смысл сооружать солнечные батареи из панелей, в том числе своими руками.

Более перспективными и эффективными теперь видятся другие представители таблицы Менделеева (в скобках цифры энергетической отдачи):

  1. Арсенид галлия GaAs (кристаллический 25,1).
  2. Фосфит индия InP ( 21,9).
  3. Фосфат индия с галлием + Арсенид галлия + Германий GaInP + GaAs + Ge (32).

Рассматривать солнечную панель глазами обывателя следует как пластину полупроводника (кремния и т.п.), каждая из сторон которой является положительным и отрицательным электродом.

Под влиянием света солнца, в результате химического фотосинтеза, на электродах панели образуются электрические потенциалы. Казалось бы, всё просто. Остаётся только подключить провода к нагрузке и пользоваться электричеством. Но на деле всё несколько иначе.

Способы подключения контроллеров

Рассматривая тему подключений, сразу нужно отметить: для установки каждого отдельно взятого аппарата характерной чертой является работа с конкретной серией солнечных панелей.

Так, например, если используется контроллер, рассчитанный на максимум  входного напряжения 100 вольт, серия солнечных панелей должна выдавать на выходе напряжение не больше этого значения.


Любая солнечная энергетическая установка действует по правилу баланса выходного и входного напряжений первой ступени. Верхняя граница напряжения контроллера должна соответствовать верхней границе напряжения панели

Прежде чем подключать аппарат, необходимо определиться с местом его физической установки. Согласно правилам, местом установки следует выбирать сухие, хорошо проветриваемые помещения. Исключается присутствие рядом с устройством легковоспламеняющихся материалов.

Техника подключения моделей PWM

Практически все производители PWM-контроллеров требуют соблюдать точную последовательность подключения приборов.


Техника соединения контроллеров PWM с периферийными устройствами особыми сложностями не выделяется. Каждая плата оснащена маркированными клеммами. Здесь попросту требуется соблюдать последовательность действий

Подключать периферийные устройства нужно в полном соответствии с обозначениями контактных клемм:

  1. Соединить провода АКБ на клеммах прибора для аккумулятора в соответствии с указанной полярностью.
  2. Непосредственно в точке контакта положительного провода включить защитный предохранитель.
  3. На контактах контроллера, предназначенных для солнечной панели, закрепить проводники, выходящие от солнечной батареи панелей. Соблюдать полярность.
  4. Подключить к выводам нагрузки прибора контрольную лампу соответствующего напряжения (обычно 12/24В).

Указанная последовательность не должна нарушаться. К примеру, подключать солнечные панели в первую очередь при неподключенном аккумуляторе категорически запрещается. Такими действиями пользователь рискует «сжечь» прибор. В этом материале более подробно описана схема сборки солнечных батарей с аккумулятором.

Также для контроллеров серии PWM недопустимо подключение инвертора напряжения на клеммы нагрузки контроллера. Инвертор следует соединять непосредственно с клеммами АКБ.

Порядок подключения приборов MPPT

Общие требования по физической инсталляции для этого вида аппаратов не отличаются от предыдущих систем. Но технологическая установка зачастую несколько иная, так как контроллеры MPPT зачастую рассматриваются аппаратами более мощными.


Для контроллеров, рассчитанных под высокие уровни мощностей, на соединениях силовых цепей рекомендуется применять кабели больших сечений, оснащённые металлическими концевиками

Например, для мощных систем эти требования дополняются тем, что производители рекомендуют брать кабель для линий силовых подключений, рассчитанный на плотность тока не менее чем 4 А/мм2. То есть, например, для контроллера на ток 60 А нужен кабель для подключения к АКБ сечением не меньше 20 мм2.

Соединительные кабели обязательно оснащаются медными наконечниками, плотно обжатыми специальным инструментом. Отрицательные клеммы солнечной панели и аккумулятора необходимо оснастить переходниками с предохранителями и выключателями.

Такой подход исключает энергетические потери и обеспечивает безопасную эксплуатацию установки.


Структурная схема подключения мощного контроллера MPPT: 1 – солнечная панель; 2 – контроллер MPPT; 3 – клеммник; 4,5 – предохранители плавкие; 6 – выключатель питания контроллера; 7,8 – земляная шина

Перед подключением солнечных панелей к прибору следует убедиться, что напряжение на клеммах соответствует или меньше напряжения, которое допустимо подавать на вход контроллера.

Подключение периферии к аппарату MTTP:

  1. Выключатели панели и аккумулятора перевести в положение «отключено».
  2. Извлечь защитные предохранители на панели и аккумуляторе.
  3. Соединить кабелем клеммы аккумулятора с клеммами контроллера для АКБ.
  4. Подключить кабелем выводы солнечной панели с клеммами контроллера, обозначенными соответствующим знаком.
  5. Соединить кабелем клемму заземления с шиной «земли».
  6. Установить температурный датчик на контроллере согласно инструкции.

После этих действий необходимо вставить на место ранее извлечённый предохранитель АКБ и перевести выключатель в положение «включено». На экране контроллера появится сигнал обнаружения аккумулятора.

Далее, после непродолжительной паузы (1-2 мин), поставить на место ранее извлечённый предохранитель солнечной панели и перевести выключатель панели в положение «включено».

Как собрать солнечную батарею своими руками

Сборка корпуса солнечной батареи

Сборка солнечных батарей, а именно, корпуса может выполняться в разных вариантах. В первом случае ее можно сделать из фанерных листов и деревянных реек, поэтому такой монтаж не представляет особой сложности. Конструкции выпиливаются по размерам, а затем соединяются между собой саморезами. Все стыки и швы предварительно промазываются герметиком. Все деревянные части покрываются краской или специальными защитными составами. Дальнейшие работы проводятся только после полного высыхания конструкции.

Немного сложнее изготовить солнечную батарею из алюминиевого уголка. В этом случае сборка каркаса происходит в следующем порядке:

  • Сборка из уголка прямоугольного каркаса.
  • В каждом углу конструкции сверлятся отверстия под крепления.
  • Внутренняя часть профиля по всему периметру покрывается силиконовым герметиком.
  • Внутрь каркаса на обработанные места укладывается текстолит или оргстекло, вырезанные по размеру. Их нужно как можно плотнее прижать к уголкам.
  • Внутри корпуса лист прозрачного материала фиксируется крепежными уголками, установленными по углам.
  • Дальнейшие работы проводятся после полного высыхания герметика. Предварительно, все внутренние поверхности протираются от пыли и загрязнений.

Пайка проводов и соединение фотоэлементов

Все элементы для солнечных батарей отличаются повышенной хрупкостью и требуют аккуратного обращения. Перед началом пайки они протираются, чтобы поверхность была идеально чистой. Элементы с припаянными проводниками все равно следует проверить и устранить обнаруженные недостатки.

На каждой фотопластинке имеются контакты с различной полярностью. Вначале проводники припаиваются к ним, а уже потом соединяются между собой.

При использовании шин вместо проводов, необходимо учитывать следующие особенности:

  • Шины размечаются и разрезаются на требуемое количество полосок.
  • Контакты пластин протираются спиртом, после чего на них наносится тонкий слой флюса, с одной стороны.
  • Шина прикладывается по всей длине контакта, после чего по ней нужно провести разогретым паяльником.
  • Пластина переворачивается, и такая же операция повторяется на другой стороне.

Паяльник во время монтажа нельзя сильно прижимать к пластине, иначе она может лопнуть. На лицевой стороне после пайки не должно оставаться неровностей. Если они остались, нужно еще раз пройти паяльником по шву.

Чтобы не ошибиться с размещением пластин, перед тем как их собирать, на поверхность листа рекомендуется нанести разметку с учетом всех размеров и зазоров. После этого фотоэлементы укладываются на свои места. Затем контакты панелей соединяются между собой с обязательным соблюдением полярности.

Нанесение герметизирующего слоя

Перед тем как самому герметизировать конструкцию, нужно выполнить тестирование и проверить солнечные батареи на работоспособность. Она выносится на солнце, после чего на выводах шин замеряется напряжение. Если оно в пределах нормы, можно приступать к нанесению герметика.

Один из наиболее подходящих вариантов предполагает следующие действия:

  • Силиконовый герметик наносится на самодельные солнечные батареи капельками по краям корпуса и между пластинами. После этого края фотоэлементов аккуратно прижимаются к прозрачному основанию и должны прилегать к нему как можно плотнее.
  • На каждый край пластинок укладывается небольшой груз, после чего герметик полностью высыхает, а фотоэлементы надежно фиксируются.
  • В самом конце аккуратно промазываются края рамки и все стыки между пластинами. На данном этапе герметиком покрывается все, кроме самих пластинок, он не должен попасть на их оборотную сторону.

Окончательная сборка солнечной панели

После всех операций остается лишь полностью собрать солнечную батарею в домашних условиях.

В этом случае порядок действий будет следующий:

  • В боковой части корпуса устанавливается соединительный разъем, к которому подключаются диоды Шоттки.
  • С лицевой стороны вся сборка пластинок солнечной батареи закрывается прозрачным защитным экраном и герметизируется, чтобы исключить попадание влаги внутрь конструкции.
  • Для обработки лицевой стороны рекомендуется использовать специальный лак, например, PLASTIK-71.
  • После сборки выполняется окончательная проверка, после чего солнечная батарея из подручных средств сделанная своими руками может устанавливаться на свое место.

Как сделать солнечную батарею своими руками

Повер банк с солнечной батареей

Обзор солнечных батарей для туристов

Установка солнечных батарей

Солнечные батареи: альтернативная энергия

Производство солнечных батарей

Как выбрать

Выбирая солнечную батарею для зарядки ноутбука, смартфона, планшета, в первую очередь обращайте внимание на соответствие выходного напряжения и мощности панели. От этого будет зависеть возможность подключения того или иного потребителя

  • Для мобильных телефонов вполне достаточно напряжения 5 В при мощности 5-8 Вт.
  • Для ноутбуков и других переносных электронных устройств подойдет солнечная зарядка, выдающая не менее 20 Вт.
  • Не лишней будет возможность параллельного подключения нескольких панелей для увеличения выходной мощности.

Наиболее производительными считаются солнечные панели из монокристаллического или аморфного кремния. Они работают и при несколько сниженном уровне освещенности.

По каждой из представленных солнечных зарядок готовы предоставить бесплатную консультацию. Звоните или оставляйте заявку на сайте, поможем сделать правильный выбор.

Обозначение символов на дисплее

  • V -измеренное напряжение на АБ
  • Vs(max) -напряжение до какого будет произведен заряд
  • Vmin(m) -минимальное напряжение на АБ при котором разряд будет отключен 
  • I -измеренный ток заряда
  • Is -установленный ток заряда
  • Id — измеренный ток разряда
  • Ii -установленный в меню ток разряда(стабилизация тока разряда)
  • Imin -минимальный ток при котором заряд будет окончен
  • H -время таймера. Для вех режимов.
  • Hi -оставшееся время до отключения по таймеру
  • P -емкость АБ-Аh
  • LED -подсветка

1.При подключении к сети устройства вывести на дисплей информацию-если АБ подключена

1.1.Напряжение до какого будет произведен заряд. По умолчанию  Vs=14.2 (Диапазон выбора в меню 1-30 вольт.)

1.2.Установленный ток заряда. По умолчанию Is=0.5А.( диапазон выбора в меню 0.5 -10А.дискретность 0.5А.)

1.3.Реальное напряжение на АБ. Например-V=13.7

1.4.Режим по умолчанию — зарядка (режим можно изменить в меню. Названия режимов. заряд . разряд. ктц акб.)

РЕЖИМ 1.заряд

Если АБ не подключена-вместо напряжения на АБ вывести надпись — no bat.Все остальное как и при подключённой АБ.

Пример 1.0. батарея не подключена

Vs=14.2       Is=0.5A
? АКБ         Заряд

При нажатии кнопки start — запустить установленный режим. При повторном нажатии — остановить. при запущенном режиме — название выбранного режима мигает. при остановленном — горит постоянно.

Пример 1.1. батарея подключена.

Vs=14.2      Is=0.5A    
V=13.7       Заряд

При запущенном режиме вместо установленного напряжения до которого будет произведен заряд отображать реальный ток заряда. Пример I = 3.6 A

Пример 1.2. идет заряд.

I=3.6A     Is=0.5A
V=13.7   заряд

После окончания заряда (по таймеру или по достижению установленного напряжения на АБ или ток заряда снизится до I=min) отключить заряд и вывести – заряд выкл.

Если ток заряда превышает установленный в меню. А также напряжение на АБ превысило установленное в меню-отключить заряд и вывести надпись — ERROR.

РЕЖИМ 2. разряд

2.При выборе режима- разряд (при запуске этого режима автоматически зарядить АБ до установленного напряжения и затем начать разряд.

Пример 2.0. Индикация в основном окне режима. Если режим не запущен-название режима (разряд) не мигает. При запущенном режиме, название режима используемого в данный момент (заряд или разряд) мигает.

Если режим запущен. АБ не заряжена. Идет автоматический   заряд, после  которого  начнется  разряд.

I=0.5A     заряд
P=0Ah  

2.1 Ток разряда по умолчанию Id = 0.5 A. Диапазон выбора в меню 0.5-10 А. дискретность 0.5 А.

2.2. Hi — Время оставшееся до конца разряда после истечения которого разряд будет отключен по умолчанию. 

2.3. Измеренная емкость батареи P=????Ah (пример Р = 45.4Ah).
 
Пример 2.1. окно в процессе разряда

Id=0.5A Hi=10
P=45.4Ah разряд

После окончания разряда подать сигнал с паузой 1 секунду. И так пока не будет включен другой режим. Сигнал подать на вывод 4 МК. Светодиод out. На дисплей вывести надпись верху — P=????Ah. Vm=11.0 внизу — разряд OFF.

Пример 2.2. разряд окончен

P=100.3Ah Vm=11.0
Разряд выкл

РЕЖИМ 3. Ктц акб. Десульфатация.

В основном окне режима, если режим запущен, название режима (КТЦ) мигает. Если не запущен — не мигает.

3.1. Ток заряда по умолчанию Is = 5А. Диапазон 0.5-10 А

3.2. Ток разряда Id = 0.5А. Диапазон 0.5-10 А.

3.3. Напряжение на АБ. Частота 1 Гц.

Пример 3.0. идет десульфатация.

I=5.0A  Id=0,5A
V=14.2  КТЦ-АКБ

После окончания заряда(по таймеру или при достижении установленного напряжения, режим отключить) вывести надпись — КТЦ ВЫКЛ. И напряжение на АБ.

Пример 3.1.конец работы.

V=14.7
КТЦ ВЫКЛ

   Обсудить статью ЗАРЯДНОЕ ДЛЯ АВТО НА КОНТРОЛЛЕРЕ

Контроллеры для солнечных батарей

Электронный модуль, называемый контроллером для солнечной батареи, предназначен выполнять целый ряд контрольных функций в процессе заряда/разряда аккумулятора, сохраняющего энергию солнечной батареи.


Такой выглядит одна из многочисленных существующих моделей контроллеров заряда для солнечной батареи. Этот модуль относится к числу разработок типа PWM

Когда на поверхность солнечной панели, установленной, к примеру, на крыше дома, падает солнечный свет, фотоэлементами устройства этот свет преобразуется в электрический ток.

Полученная энергия, по сути, могла бы подаваться непосредственно на аккумулятор-накопитель. Однако процесс зарядки/разрядки АКБ имеет свои тонкости (определённые уровни токов и напряжений). Если пренебречь этими тонкостями, АКБ за короткий срок эксплуатации попросту выйдет из строя. Чтобы не иметь таких грустных последствий, предназначен модуль, именуемый контроллером заряда для солнечной батареи.

Помимо контроля уровня заряда аккумулятора, модуль также отслеживает потребление энергии. В зависимости от степени разряда, схемой контроллера заряда аккумулятора от солнечной батареи регулируется и устанавливается уровень тока, необходимый для начального и последующего заряда.


В зависимости от мощности контроллера заряда аккумуляторных батарей солнечной энергетической установки, конструкции этих устройств могут иметь самую разную конфигурацию

В общем, если говорить простым языком, модуль обеспечивает беззаботную «жизнь» для АКБ, что периодически накапливает и отдаёт энергию устройствам-потребителям.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий