Установка терморегулятора
Несколько слов о том, как подключить термостат Баллу ВМТ 1. Монтаж прибора должен проходить последовательно:
- Отодвиньте крышку терморегулятора и выверните винты и заглушки.
- В розетке при помощи индикаторной отвертки определяете фазу.
- Коричневый провод (фаза) присоединяете к датчику.
- К третьему проводу по схеме подключаете один конец обогревателя.
- К оставшемуся концу подсоединяете синий провод.
- Между третьим и пятым проводом поставьте перемычку.
- После промежуточного испытания, в котором прозванивают устройство, чтобы проверить, работает ли терморегулятор, надевается пластиковая коробка.
На рисунке ниже указано как присоединить термостат Ballu BMT 1 согласно схеме подключения. К месту расположения прибора прокладывают проводку, которую подсоединяют к нулю или фазе.
На термостат Ballu BMT 2 схема подключения аналогична приведенной выше, только номера клемм разные. После монтажа прибор соединяют с инфракрасным обогревателем отдельно проведенной линией.
Если у вас остались вопросы, то позвоните нам! Наши консультанты проконсультируют вас.
Терморегулятор Ballu BMT 1 — специальный прибор, с помощью которого регулируется величина теплоотдачи инфракрасного обогревателя . Его подключение позволяет значительно сократить потребление энергии при работе обогревающего устройства.
Кроме того, имея функцию задания поддержки определенной температуры в помещении, терморегулятор обеспечивает комфортную температуру
при изменяющихся внешних условиях.
К достоинствам такого прибора можно отнести возможность его работы без электропитания, а к недостаткам — регулирование температуры происходит в пределах 0,5-1°С.
1.4 Электронные приборы
Оборудованы такие приборы температурным датчиком, работа которого основана на считывании определенных частот электромагнитных волн. При этом можно получать данные о температуре внешней среды и непосредственно в отапливаемом помещении.
Блок управления, получив данные от температурного датчика, регулирует работу обогревателя в соответствии с программой по определенному алгоритму. Схема обработки сигналов заложена изготовителем и может иметь множество вариантов регулирования
в зависимости от заданных пользователем параметров.
К достоинствам электронного устройства относятся:
- высокая точность — 0,1°С;
- автономность — возможность программирования на длительный срок без дальнейшего вмешательства пользователя.
В виде недостатка можно выделить зависимость от стороннего .
Достоинства и недостатки
Даже простой терморегулятор своими руками имеет массу достоинств и положительных моментов. Говорить же о заводских многофункциональных устройствах и вовсе не приходится.
Регуляторы температуры позволяют:
- Поддерживать комфортную температуру.
- Экономить энергоресурсы.
- Не привлекать к процессу человека.
- Соблюдать технологический процесс, повышая качество.
Из недостатков можно назвать высокую стоимость заводских моделей. Конечно, самодельных приборов это не касается. А вот производственные, которые требуются при работе с жидкими, газообразными, щелочными и другими подобными средами, имеют высокую стоимость. Особенно если прибор должен иметь множество функций и возможностей.
Создаем простой терморегулятор
При ремонте бытовой электротехники вы могли сталкиваться с ситуацией, когда со строя выходил терморегулятор. Хоть это и небольшая микросхема, устанавливаемая для контроля величины нагрева или охлаждения чего-либо.
Увы, стоимость такого элемента заводского изготовления довольно высока, поэтому куда выгоднее собрать терморегулятор самому. Схема достаточно простого самодельного терморегулятора приведена на рисунке ниже.
Рис. 5. Схема простейшего терморегулятора
Для его изготовления вам понадобится:
- понижающий трансформатор с 220 на 12 В;
- шесть диодов (в рассматриваемом примере используются IN4007);
- конденсаторы на 47 мкФ, 1 мФ и 2 мФ;
- микросхема для стабилизатора на 5В;
- транзистор (в рассматриваемом примере это КТ814А);
- стабилитрон с регулируемым параметром (TL431);
- резистивные элементы на 4,7; 160, 150 и 910 кОм;
- резистор с изменяемым сопротивлением на 150 кОм;
- термозависимый резистор 50 кОм;
- светодиод;
- электромагнитное реле 100 мА с питающим напряжением 12В (в рассматриваемом примере используется автомобильный вариант);
- кнопка и корпус.
Процесс изготовления состоит из таких этапов:
- При помощи паяльника соберите вышеперечисленные детали на печатную плату, как показано на схеме выше.
- После этого выведите измерительный орган для терморегулятора на открытое пространство, чтобы установить в нужную локацию.
Рис. 6. Выведите измерительный элемент
Установите переменный резистор на жесткий каркас и нанесите градуировку температурных режимов для настройки прибора.
Рис. 7. Установите регулятор на каркас и нанесите градуировку
На клеммник подключите шнур питания.
Подключите питающий шнур к клеммнику
В данном случае клеммник взят со старого прибора, располагавшегося в корпусе.
Подключите все отдельно размещенные элементы к плате и закройте корпусом.
После сборки терморегулятора его можно установить в любое место, к примеру, для обогрева и подключить в цепь питания электрического котла. В случае, когда радиаторы отопления нагреют помещение до установленной температуры, контакты реле разорвут цепь и прекратят электроснабжение. При остывании цифрового термометра, снова произойдет включение отопления и снова пойдет нагрев. Если вас не устраивает температурный режим, его можно изменить настройкой датчика.
Это интересно: Как измерить силу тока в цепи постоянного и переменного тока
Схема подключения
Когда сам пол уложен, а все подготовительные работы выполнены, можно приступать к подключению электрического тёплого пола к терморегулятору. Сделать это несложно. Как правило, если покупать прибор в магазине, к нему всегда прилагается инструкция с описанием особенностей, настройки и монтажа. Схема, как подключить тёплый пол к терморегулятору, расположена и на задней части прибора.
Схема подключения теплого пола несложна, разобраться с ней сможет даже неопытный человек
Как видно из рисунка, первые два контакта используются для подключения электропитания 220 вольт. При этом крайне желательно подсоединить фазу и ноль так, как указано на схеме прибора.
Контакты под номерами 3 и 4 предназначены для подключения непосредственно потребителя. Здесь стоит быть крайне внимательным, так как неопытные мастера зачастую именно на эти клеммы подключают питающие провода, что всегда приводит к выходу прибора из строя.
Клемма под номером 5 (для данного примера) остаётся свободной, а вот 6 и 7 используются для подключения к ним датчика температуры. Здесь тоже нелишним будет предварительно его проверить. Для этого тестером (мультиметром) в режиме измерения сопротивления необходимо посмотреть, какие показания даёт термодатчик. Для данного примера это значение должно быть 10 кОм с возможным отклонением 5–10%. Если датчик показывает короткое замыкание или другие сильно отличные от указанных значения, то он явно неисправен.
В этом видео вы узнаете о том, как подключить терморегулятор:
Механический терморегулятор
На сегодня самые новые модели терморегуляторов управляются с помощью сенсорных кнопок, более старые модели — механическими. Большинство этих устройств имеют цифровую панель, где отображается температура теплоносителя в реальном времени, а также необходимый максимальный градус.
Производство таких устройств не обходится без их программирования, поэтому их цена очень высокая. Они позволяют настроить температурный режим по разным параметрам, к примеру, по часам или дням недели. Температура при этом будет меняться автоматически.
Если говорить о терморегуляторах для промышленных стальных печей, то сделать их самостоятельно будет сложно, так как они имеют сложную конструкцию и требуют внимания не одного специалиста. Такие в основном изготавливаются на заводах. Но сделать простой регулятор температуры своими руками для автономной отопительной системы, инкубаторов и т. п. — это несложная задача. Главное, придерживаться всех чертежей и рекомендаций по производству.
Для того чтобы понять, как работает терморегулятор, можно разобрать простую механическую конструкцию. Она работает по принципу открывания и закрывания дверки (заслонки) котла, чем уменьшает или увеличивает доступ воздуха к камере сгорания. Реагирует датчик, конечно же, на температуру.
Для производства такого устройства понадобятся следующие комплектующие
- пружина для возврата;
- два рычага;
- две алюминиевые трубки;
- регулировочный узел (имеет вид кран-буксы);
- цепочка, которая соединяет две части (термостат и дверку).
Все комплектующие необходимо собрать и вмонтировать на котёл.
Но такая схема имеет и свои существенные минусы. Проблема в том, что определить таким образом, когда сработает заслонка, трудно. Чтобы приблизительно настроить механизм, нужны точные расчёты. Невозможно определить в точности насколько будет расширяться алюминиевая труба. Поэтому в большинстве случаев сейчас предпочитают устройства с электронными датчиками.
Самодельный механический терморегулятор для шахтного котла
Устройство ТЭН.
ТЭН представляет собой электрический нагревательный элемент, выполненный из тонкостенной металлической трубки (оболочки), материалом для которой служит медь, латунь, нержавеющая и углеродистая сталь. Внутри трубки расположена спираль из нихромовой проволоки, обладающая большим удельным электрическим сопротивлением. Концы спирали соединены с металлическими выводами, которыми нагреватель подключается к питающему напряжению.
От стенок трубки спираль изолирована спрессованным электроизоляционным наполнителем, который служит для отвода тепловой энергии от спирали и надежно фиксирует ее в центре трубки по всей длине. В качестве наполнителя используется плавленая окись магния, корунд или кварцевый песок. Для защиты наполнителя от проникновения влаги из окружающей среды торцы ТЭНа герметизируют термовлагостойким лаком.
Выводы нагревателя изолированы от стенок трубки и жестко зафиксированы керамическими изоляторами. Питающие провода подключаются к резьбовым концам выводов при помощи гаек и шайб.
Работает ТЭН следующим образом: при прохождении электрического тока по спирали она, нагреваясь, нагревает наполнитель и стенки трубки, через которые тепло излучается в окружающую среду.
При нагреве газообразных сред для увеличения теплоотдачи от ТЭНов применяют их оребрение
, выполненное из материала с хорошей теплопроводностью. Как правило, для оребрения используют стальную гофрированную ленту, навитую по спирали на внешнюю оболочку ТЭНа.
Применение такого конструктивного решения способствует уменьшению габаритных размеров и токовой нагрузке нагревателя.
Немного теории
Любой терморегулятор конструктивно включает в себя три основных блока:
Теоретически температурный датчик можно представить набором из четырех сопротивлений, среди которых три резистора будут представлены элементами с постоянными электрическими параметрами, а четвертый переменным. Они собираются в схему измерительного полуплеча, приведенную на рисунке 1 ниже:
На схеме показан принцип соединения резисторов для получения температурного датчика. Как видите, сопротивление R2 является переменным и меняет физическую величину в соответствии с изменениями температуры окружающей среды. При подаче одного и того напряжения питания в терморегуляторе, при изменении сопротивления в плече будет возрастать ток в цепи.
На основании изменений происходит анализ температурных колебаний в результате которого рабочий орган вызывает срабатывание терморегулятора и последующее отключение или включение оборудования.
Для измерения сопротивления резисторов в качестве логического элемента устанавливается микросхема, работающая в режиме компаратора. Ее задача сравнить электрические сигналы в двух плечах. Пример схемы регулятора температуры приведен на рисунке:
Здесь блок микросхемы U1A принимает сигналы от измерителя температуры на входы 2 и 3. При достижении температуры срабатывания, в плечах начнет протекать разный ток, и компаратор выдаст на управляющий элемент электронного терморегулятора сигнал о включении.
При остывании датчика термометра ток в плечах терморегулятора уравняется, и электронный блок выдаст управляющий сигнал на отключение. Приведенная электронная схема работает в двух устойчивых состояниях – отключенном и включенном, чередование рабочих режимов происходит в соответствии с заданной логикой.
Эта схема терморегулятора используется в работе куллера персонального компьютера, получая электроснабжение от блока питания, происходит сравнение тока в плечах. Когда блок питания перегреется, терморегулятор переведет транзистор в противоположное состояние и вентилятор запустится.
Такой принцип может применяться не только в вентиляторах, но и в ряде других устройств:
- для контроля работы электрического отопления по температурным показаниям в помещении;
- для установки уровня температуры в самодельном инкубаторе;
- при подключении теплого пола для контроля его работы;
- для установки температурного диапазона работы двигателя, с принудительным охлаждением или отключением системы при достижении граничного значения температуры;
- для паяльных станций или ручных паяльников;
- в системах охлаждения и холодильном оборудовании с логикой снижения температуры в определенных пределах;
- в духовках, печах как бытового, так и промышленного назначения.
Сфера применения терморегулятора ничем не ограничена, везде, где вы хотите получить контроль уровня температуры в автоматическом режиме с управлением питания, такое устройство станет отличным помощником.
Простой терморегулятор своими руками – схема
Устройство термостата особой сложностью не отличается, поэтому многие начинающие радиолюбители оттачивают на изготовлении этого прибора свое мастерство. Схемы предлагаются самые разные, но наибольшее распространение получил вариант с применением особой микросхемы, называемой компаратором.
У этого элемента есть два входа и один выход. На один вход подается некое эталонное напряжение, которое соответствует требуемой температуре, а на второй – напряжение от термодатчика.
Схема терморегулятора для теплых полов
Компаратор сравнивает поступающие данные и при определенном их соотношении генерирует на выходе сигнал, открывающий транзистор или включающий реле. При этом подается ток на нагреватель или холодильный агрегат.
Поэтапная инструкция по монтажу регулятора
Рассматриваемое мероприятие состоит из нескольких основных технологических этапов. Придерживайтесь приведенной последовательности, и все обязательно получится.
Первый этап. Вооружившись перфоратором, дрелью или другим подходящим инструментом, подготовьте в стене отверстие для подключаемого устройства. Его размер должен позволять установить коробку. На этом же этапе обустройте каналы для прокладывания кабелей и обустройства датчика. Поместите установочную коробку в ранее подготовленное монтажное отверстие.
Фото штробы в стене, соединяющей пол с терморегулятором
Штроба должна быть 20х20 мм
Второй этап. Уложите провода. Питающие кабели системы подогрева пола нужно подвести к коробке. На этой же стадии работы заведите в коробку провода температурного датчика.
Схема прокладки проводов в гофре
Третий этап. Установите температурный регулятор. Ваша задача сводится к простому фиксированию устройства в коробке.
Четвертый этап. Соедините главные узлы системы. На этой стадии вы должны четко следовать положениям инструкции производителя, т.к. последовательность действий несколько отличается для разных моделей устройств.
Подключение терморегулятора теплого пола
Пятый этап. Установите лицевую панель. Для фиксации используйте монтажные винты из комплекта. Проверьте ровность монтажа регулятора при помощи уровня. После этого закройте крышку термостата и включите напряжение. Если все в порядке, вы поймете это по загоревшемуся индикатору теплого пола или включению экрана регулятора. Можете приступать к настройке устройства.
Проверка системы
Исполнителю разрешается лишь измерить сопротивление, создающееся между греющими жилами, воспользовавшись специально предназначенным для этого инструментом. Полученные замеры сопоставляются с оптимальными значениями, приведенными в руководстве производителя. Если все в порядке, останется лишь дождаться полного высыхания и набора прочности стяжки, после чего систему, укомплектованную термостатом и сопутствующим датчиком, можно будет вводить в полноценную эксплуатацию.
Удачной работы!
Немного теории
Любой терморегулятор конструктивно включает в себя три основных блока:
- измерительный;
- логический;
- исполнительный.
Теоретически температурный датчик можно представить набором из четырех сопротивлений, среди которых три резистора будут представлены элементами с постоянными электрическими параметрами, а четвертый переменным. Они собираются в схему измерительного полуплеча, приведенную на рисунке 1 ниже:
Рис. 1. Датчик из полуплеча резисторов
На схеме показан принцип соединения резисторов для получения температурного датчика. Как видите, сопротивление R2 является переменным и меняет физическую величину в соответствии с изменениями температуры окружающей среды. При подаче одного и того напряжения питания в терморегуляторе, при изменении сопротивления в плече будет возрастать ток в цепи.
На основании изменений происходит анализ температурных колебаний в результате которого рабочий орган вызывает срабатывание терморегулятора и последующее отключение или включение оборудования.
Для измерения сопротивления резисторов в качестве логического элемента устанавливается микросхема, работающая в режиме компаратора. Ее задача сравнить электрические сигналы в двух плечах. Пример схемы регулятора температуры приведен на рисунке:
Рис. 2. Принципиальная схема терморегулятора
Здесь блок микросхемы U1A принимает сигналы от измерителя температуры на входы 2 и 3. При достижении температуры срабатывания, в плечах начнет протекать разный ток, и компаратор выдаст на управляющий элемент электронного терморегулятора сигнал о включении.
При остывании датчика термометра ток в плечах терморегулятора уравняется, и электронный блок выдаст управляющий сигнал на отключение. Приведенная электронная схема работает в двух устойчивых состояниях – отключенном и включенном, чередование рабочих режимов происходит в соответствии с заданной логикой.
Эта схема терморегулятора используется в работе куллера персонального компьютера, получая электроснабжение от блока питания, происходит сравнение тока в плечах. Когда блок питания перегреется, терморегулятор переведет транзистор в противоположное состояние и вентилятор запустится.
Такой принцип может применяться не только в вентиляторах, но и в ряде других устройств:
- для контроля работы электрического отопления по температурным показаниям в помещении;
- для установки уровня температуры в самодельном инкубаторе;
- при подключении теплого пола для контроля его работы;
- для установки температурного диапазона работы двигателя, с принудительным охлаждением или отключением системы при достижении граничного значения температуры;
- для паяльных станций или ручных паяльников;
- в системах охлаждения и холодильном оборудовании с логикой снижения температуры в определенных пределах;
- в духовках, печах как бытового, так и промышленного назначения.
Сфера применения терморегулятора ничем не ограничена, везде, где вы хотите получить контроль уровня температуры в автоматическом режиме с управлением питания, такое устройство станет отличным помощником.
Детали устройства
В принципе, в этом качестве может быть задействован любой полупроводниковый элемент, так как характеристики этих деталей всегда зависят от температуры.
Так, например, ток коллектора обычного биполярного транзистора при нагреве возрастает, что неминуемо отражается на работе усилительного каскада (транзистор перестает реагировать на входной сигнал из-за смещения рабочей точки).
Похожим образом реагируют на изменение температуры и кремниевые диоды. При температуре +25 градусов напряжение на контактах свободного диода составит около 700 мВ, а замеры на перманентном диоде покажут примерно 300 мВ. Если же температура будет повышаться, напряжение с каждым градусом будет падать примерно на 2 мВ.
Однако, у всех этих элементов есть существенный недостаток: собранные на их базе терморегуляторы с большим трудом приходится настраивать, иначе говоря, калибровать. Ведь нам только приблизительно известно, какую элемент демонстрирует характеристику при той или иной температуре и как именно он реагирует на ее колебания. Гораздо проще работать с выпускаемыми современной промышленностью термодатчиками, проходящими калибровку еще на стадии производственного процесса.
Сильного удорожания проекта покупка такой детали не вызовет. Так, например, аналоговый термодатчик марки LM-335 компании National Semiconductor стоит всего 1 доллар.
Можно использовать и его модификации – датчики LM-135 и LM-235, хотя они предназначены для применения, соответственно, в военной электронике и промышленности.
Только в данном случае все параметры досконально известны: на каждый градус по шкале абсолютных температур (Кельвина) приходится напряжение в 10 мВ или 0,01 В.
Таким образом, если мы хотим знать, каким будет напряжение стабилизации LM-335 при температуре 20 градусов Цельсия, нужно прибавить к этому значению 273 (перевод в градусы Кельвина), а затем результат умножить на 0,01 В. В данном случае получим 2,93 В. На производстве датчик калибруется по температуре 25 градусов Цельсия. Рабочий диапазон температур, в пределах которого напряжение меняется линейно и по указанному закону (10 мВ/градус) лежит в пределах от -40 до +100 градусов Цельсия.
Итак, зная точное напряжение стабилизации LM-335 при той или иной температуре, нам остается выставить соответствующее напряжение на втором входе компаратора – и настройка терморегулятора будет завершена.
- Схему на базе термодатчика LM-335 следует компоновать таким образом, чтобы через него протекал ток величиной от 0,45 до 5 мА. Отметим, что напряжение питания терморегулятора не обязательно должно составлять 12 В. Это значение было предложено только потому, что оно позволяет применить вместо самодельного блока питания (понижающий трансформатор + выпрямитель + стабилизатор) обычный адаптер, который можно недорого купить в магазине. Если же все делать самостоятельно, то понижающий трансформатор можно собрать в расчете на выходное напряжение в пределах 3 – 15 В. Главное, чтобы на такое же напряжение было рассчитано используемое в схеме реле.
- Далее подбирают сопротивление резисторов делителя напряжения и переменного резистора таким образом, чтобы при имеющемся напряжении сила протекающего через термодатчик тока находилась в указанных пределах. В принципе, датчик останется работоспособным и при силе тока свыше 5 мА, но тогда он будет сильно греться, из-за чего терморегулятор будет работать некорректно.
- В качестве компаратора можно применить микросхему того же производителя, выпускаемую под маркой LM-311 (модификации для «военки» и промышленности – соответственно, LM-111 и LM-211).
Используемое в схеме реле является многоконтактным (типа МКУ). В упрощенном исполнении (без аккумулятора) можно воспользоваться автомобильным реле
Важно удостовериться, что допустимая для данного реле величина силы тока соответствует мощности нагревателя
Электрические котлы
Достаточно распространённая альтернатива газовым и твердотопливным котлам. Масса преимуществ, большой КПД, но большой срок окупаемости. Подключение простое, как и у газовых котлов, но без подвода холодной воды. Предусмотрено регулирование температуры и защита от перегрева.
Механический таймер котла
При помощи простого механического таймера электрического котла возможны три варианта запуска системы центрального отопления :
- Котёл выключен;
- Котёл подаёт тёплую воду;
- Котёл включается и выключается в установленное время.
Механические таймеры обычно имеют большой круглый циферблат с 24-часовой шкалой в центральной части. Поворачивая диск, можно установить нужное время, а затем оставить его в таком положении. Включение котла будет происходить в нужное время. Внешняя часть состоит из набора вкладок 15-минутного периода, которые вставлены для удобства регулировки работы и настройки режимов. Возможна экстренная перенастройка, которая выполняется при включённом в сеть котле.
Механические таймеры просты в настройке, но при этом котёл всегда включается и выключается в то же время каждый день, а это может не удовлетворить хозяев, если семья большая, и банные процедуры проводятся несколько раз в день в разное время.
Самодельный регулятор температуры
Лабораторный блок питания своими руками
Создать функциональный термостат своими руками не слишком сложно. Тем не менее, надо реалистично оценивать собственные возможности. Следующие инструкции помогут принять правильное решение.
Простейшая схема
Чтобы исключить лишние трудности, применяют схему с блоком питания без трансформатора. Для выпрямления питающего напряжения используют обычный диодный мост. Необходимый уровень постоянной составляющей поддерживают стабилитроном. Конденсатором устраняют броски.
Типовой делитель подойдет для контроля напряжения. В одном плече устанавливают резистор, который реагирует на изменение температуры. Для управления исполнительным устройством подойдет реле.
Прибор для помещения
Это устройство можно использовать для поддержания температурного режима в мини-теплице, другом ограниченном объеме. Основной элемент – микросхема операционного усилителя, которая включена в режиме сравнения напряжений. Точную и грубую настройку порога срабатывания выполняют с помощью резисторов R5 и R4, соответственно.
Терморегулятор для инкубатора
На микросхеме LM 311
Этот вариант предназначен для подключения электрических теплых полов, других мощных нагрузок
Следует обратить внимание на повышенную надежность изделия, которая обеспечена гальванической развязкой цепей со слабыми и сильными токами
Схема для подключения мощной нагрузки
Немного теории
Любой терморегулятор конструктивно включает в себя три основных блока:
Теоретически температурный датчик можно представить набором из четырех сопротивлений, среди которых три резистора будут представлены элементами с постоянными электрическими параметрами, а четвертый переменным. Они собираются в схему измерительного полуплеча, приведенную на рисунке 1 ниже:
На схеме показан принцип соединения резисторов для получения температурного датчика. Как видите, сопротивление R2 является переменным и меняет физическую величину в соответствии с изменениями температуры окружающей среды. При подаче одного и того напряжения питания в терморегуляторе, при изменении сопротивления в плече будет возрастать ток в цепи.
На основании изменений происходит анализ температурных колебаний в результате которого рабочий орган вызывает срабатывание терморегулятора и последующее отключение или включение оборудования.
Для измерения сопротивления резисторов в качестве логического элемента устанавливается микросхема, работающая в режиме компаратора. Ее задача сравнить электрические сигналы в двух плечах. Пример схемы регулятора температуры приведен на рисунке:
Здесь блок микросхемы U1A принимает сигналы от измерителя температуры на входы 2 и 3. При достижении температуры срабатывания, в плечах начнет протекать разный ток, и компаратор выдаст на управляющий элемент электронного терморегулятора сигнал о включении.
При остывании датчика термометра ток в плечах терморегулятора уравняется, и электронный блок выдаст управляющий сигнал на отключение. Приведенная электронная схема работает в двух устойчивых состояниях – отключенном и включенном, чередование рабочих режимов происходит в соответствии с заданной логикой.
Эта схема терморегулятора используется в работе куллера персонального компьютера, получая электроснабжение от блока питания, происходит сравнение тока в плечах. Когда блок питания перегреется, терморегулятор переведет транзистор в противоположное состояние и вентилятор запустится.
Такой принцип может применяться не только в вентиляторах, но и в ряде других устройств:
- для контроля работы электрического отопления по температурным показаниям в помещении;
- для установки уровня температуры в самодельном инкубаторе;
- при подключении теплого пола для контроля его работы;
- для установки температурного диапазона работы двигателя, с принудительным охлаждением или отключением системы при достижении граничного значения температуры;
- для паяльных станций или ручных паяльников;
- в системах охлаждения и холодильном оборудовании с логикой снижения температуры в определенных пределах;
- в духовках, печах как бытового, так и промышленного назначения.
Сфера применения терморегулятора ничем не ограничена, везде, где вы хотите получить контроль уровня температуры в автоматическом режиме с управлением питания, такое устройство станет отличным помощником.